亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Grid maps, especially occupancy grid maps, are ubiquitous in many mobile robot applications. To simplify the process of learning the map, grid maps subdivide the world into a grid of cells, whose occupancies are independently estimated using only measurements in the perceptual field of the particular cell. However, the world consists of objects that span multiple cells, which means that measurements falling onto a cell provide evidence on the occupancy of other cells belonging to the same object. This correlation is not captured by current models. In this work, we present a way to generalize the update of grid maps relaxing the assumption of independence by modeling the relationship between the measurements and the occupancy of each cell as a set of latent variables, and jointly estimating those variables and the posterior of the map. Additionally, we propose a method to estimate the latent variables by clustering based on semantic labels and an extension to the Normal Distributions Transfer Occupancy Map (NDT-OM) to facilitate the proposed map update method. We perform comprehensive experiments of map creation and localization with real world data sets, and show that the proposed method creates better maps in highly dynamic environments compared to state-of-the-art methods. Finally, we demonstrate the ability of the proposed method to remove occluded objects from the map in a lifelong map update scenario.

相關內容

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.

We consider an e-commerce retailer operating a supply chain that consists of middle- and last-mile transportation, and study its ability to deliver products stored in warehouses within a day from customer's order time. Successful next-day delivery requires inventory availability and timely truck schedules in the middle-mile and in this paper we assume a fixed inventory position and focus on optimizing the middle-mile. We formulate a novel optimization problem which decides the departure of the last middle-mile truck at each (potential) network connection in order to maximize the number of next-day deliveries. We show that the respective \emph{next-day delivery optimization} is a combinatorial problem that is $NP$-hard to approximate within $(1-1/e)\cdot\texttt{opt}\approx 0.632\cdot\texttt{opt}$, hence every retailer that offers one-day deliveries has to deal with this complexity barrier. We study three variants of the problem motivated by operational constraints that different retailers encounter, and propose solutions schemes tailored to each problem's properties. To that end, we rely on greedy submodular maximization, pipage rounding techniques, and Lagrangian heuristics. The algorithms are scalable, offer optimality gap guarantees, and evaluated in realistic datasets and network scenarios were found to achieve near-optimal results.

Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.

Vision foundation models are a new frontier in Geospatial Artificial Intelligence (GeoAI), an interdisciplinary research area that applies and extends AI for geospatial problem solving and geographic knowledge discovery, because of their potential to enable powerful image analysis by learning and extracting important image features from vast amounts of geospatial data. This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping. This model is compared with convolutional neural network and vision transformer-based architectures in terms of mapping accuracy for flooded areas. A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated based on both a test dataset and a dataset that is completely unseen by the model. Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions. The findings also indicate areas for improvement for the Prithvi model in terms of adopting multi-scale representation learning, developing more end-to-end pipelines for high-level image analysis tasks, and offering more flexibility in terms of input data bands.

Bayesian optimal design of experiments is a well-established approach to planning experiments. Briefly, a probability distribution, known as a statistical model, for the responses is assumed which is dependent on a vector of unknown parameters. A utility function is then specified which gives the gain in information for estimating the true value of the parameters using the Bayesian posterior distribution. A Bayesian optimal design is given by maximising the expectation of the utility with respect to the joint distribution given by the statistical model and prior distribution for the true parameter values. The approach takes account of the experimental aim via specification of the utility and of all assumed sources of uncertainty via the expected utility. However, it is predicated on the specification of the statistical model. Recently, a new type of statistical inference, known as Gibbs (or General Bayesian) inference, has been advanced. This is Bayesian-like, in that uncertainty on unknown quantities is represented by a posterior distribution, but does not necessarily rely on specification of a statistical model. Thus the resulting inference should be less sensitive to misspecification of the statistical model. The purpose of this paper is to propose Gibbs optimal design: a framework for optimal design of experiments for Gibbs inference. The concept behind the framework is introduced along with a computational approach to find Gibbs optimal designs in practice. The framework is demonstrated on exemplars including linear models, and experiments with count and time-to-event responses.

We address speech enhancement based on variational autoencoders, which involves learning a speech prior distribution in the time-frequency (TF) domain. A zero-mean complex-valued Gaussian distribution is usually assumed for the generative model, where the speech information is encoded in the variance as a function of a latent variable. In contrast to this commonly used approach, we propose a weighted variance generative model, where the contribution of each spectrogram time-frame in parameter learning is weighted. We impose a Gamma prior distribution on the weights, which would effectively lead to a Student's t-distribution instead of Gaussian for speech generative modeling. We develop efficient training and speech enhancement algorithms based on the proposed generative model. Our experimental results on spectrogram auto-encoding and speech enhancement demonstrate the effectiveness and robustness of the proposed approach compared to the standard unweighted variance model.

Neuromorphic computing relies on spike-based, energy-efficient communication, inherently implying the need for conversion between real-valued (sensory) data and binary, sparse spiking representation. This is usually accomplished using the real valued data as current input to a spiking neuron model, and tuning the neuron's parameters to match a desired, often biologically inspired behaviour. We developed a tool, the WaLiN-GUI, that supports the investigation of neuron models and parameter combinations to identify suitable configurations for neuron-based encoding of sample-based data into spike trains. Due to the generalized LIF model implemented by default, next to the LIF and Izhikevich neuron models, many spiking behaviors can be investigated out of the box, thus offering the possibility of tuning biologically plausible responses to the input data. The GUI is provided open source and with documentation, being easy to extend with further neuron models and personalize with data analysis functions.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司