Many variations of the classical graph coloring model have been intensively studied due to their multiple applications; scheduling problems and aircraft assignments, for instance, motivate the \emph{robust coloring problem}. This model gets to capture natural constraints of those optimization problems by combining the information provided by two colorings: a vertex coloring of a graph and the induced edge coloring on a subgraph of its complement; the goal is to minimize, among all proper colorings of the graph for a fixed number of colors, the number of edges in the subgraph with the endpoints of the same color. The study of the robust coloring model has been focused on the search for heuristics due to its NP-hard character when using at least three colors, but little progress has been made in other directions. We present a new approach on the problem obtaining the first collection of non heuristic results for general graphs; among them, we prove that robust coloring is the model that better approaches the partition of any system into equal or almost equal conflict-free subsystem, relating strongly this model with the well-known equitable colorings. We also show the NP-completeness of their decision problems for the unsolved case of two colors, obtain bounds on the associated robust coloring parameter, and solve a conjecture on paths that illustrates the complexity of studying this coloring model.
The basic goal of survivable network design is to build cheap networks that guarantee the connectivity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain [Combinatorica'01] provides a 2-approximation for a wide class of these problems. However nothing better is known even for very basic special cases, raising the natural question whether any improved approximation factor is possible at all. In this paper we address one of the most basic problems in this family for which 2 is still the best-known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted graph (that w.l.o.g. is a forest) and a collection of extra edges (links), compute a minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several better-than-2 approximation algorithms are known for the special case where the input graph is a tree, a.k.a. the Tree Augmentation Problem (TAP). Recently this was achieved also for the weighted version of TAP, and for the k-edge-connectivity generalization of TAP. These results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP. In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingredients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving, however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of implicit credits which might turn out to be helpful in future related work.
Interacting agents receive public information at no cost and flexibly acquire private information at a cost proportional to entropy reduction. When a policymaker provides more public information, agents acquire less private information, thus lowering information costs. Does more public information raise or reduce uncertainty faced by agents? Is it beneficial or detrimental to welfare? To address these questions, we examine the impacts of public information on flexible information acquisition in a linear-quadratic-Gaussian game with arbitrary quadratic material welfare. More public information raises uncertainty if and only if the game exhibits strategic complementarity, which can be harmful to welfare. However, when agents acquire a large amount of information, more provision of public information increases welfare through a substantial reduction in the cost of information. We give a necessary and sufficient condition for welfare to increase with public information and identify optimal public information disclosure, which is either full or partial disclosure depending upon the welfare function and the slope of the best response.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
Computing a maximum independent set (MaxIS) is a fundamental NP-hard problem in graph theory, which has important applications in a wide spectrum of fields. Since graphs in many applications are changing frequently over time, the problem of maintaining a MaxIS over dynamic graphs has attracted increasing attention over the past few years. Due to the intractability of maintaining an exact MaxIS, this paper aims to develop efficient algorithms that can maintain an approximate MaxIS with an accuracy guarantee theoretically. In particular, we propose a framework that maintains a $(\frac{\Delta}{2} + 1)$-approximate MaxIS over dynamic graphs and prove that it achieves a constant approximation ratio in many real-world networks. To the best of our knowledge, this is the first non-trivial approximability result for the dynamic MaxIS problem. Following the framework, we implement an efficient linear-time dynamic algorithm and a more effective dynamic algorithm with near-linear expected time complexity. Our thorough experiments over real and synthetic graphs demonstrate the effectiveness and efficiency of the proposed algorithms, especially when the graph is highly dynamic.
Recognizing the type of connected devices to a network helps to perform security policies. In smart grids, identifying massive number of grid metering terminals based on network traffic analysis is almost blank and existing research has not proposed a targeted end-to-end model to solve the flow classification problem. Therefore, we proposed a hierarchical terminal recognition approach that applies the details of grid data. We have formed a two-level model structure by segmenting the grid data, which uses the statistical characteristics of network traffic and the specific behavior characteristics of grid metering terminals. Moreover, through the selection and reconstruction of features, we combine three algorithms to achieve accurate identification of terminal types that transmit network traffic. We conduct extensive experiments on a real dataset containing three types of grid metering terminals, and the results show that our research has improved performance compared to common recognition models. The combination of an autoencoder, K-Means and GradientBoost algorithm achieved the best recognition rate with F1 value of 98.3%.
Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
Multi-camera vehicle tracking is one of the most complicated tasks in Computer Vision as it involves distinct tasks including Vehicle Detection, Tracking, and Re-identification. Despite the challenges, multi-camera vehicle tracking has immense potential in transportation applications including speed, volume, origin-destination (O-D), and routing data generation. Several recent works have addressed the multi-camera tracking problem. However, most of the effort has gone towards improving accuracy on high-quality benchmark datasets while disregarding lower camera resolutions, compression artifacts and the overwhelming amount of computational power and time needed to carry out this task on its edge and thus making it prohibitive for large-scale and real-time deployment. Therefore, in this work we shed light on practical issues that should be addressed for the design of a multi-camera tracking system to provide actionable and timely insights. Moreover, we propose a real-time city-scale multi-camera vehicle tracking system that compares favorably to computationally intensive alternatives and handles real-world, low-resolution CCTV instead of idealized and curated video streams. To show its effectiveness, in addition to integration into the Regional Integrated Transportation Information System (RITIS), we participated in the 2021 NVIDIA AI City multi-camera tracking challenge and our method is ranked among the top five performers on the public leaderboard.
Upcoming HEP experiments, e.g. at the HL-LHC, are expected to increase the volume of generated data by at least one order of magnitude. In order to retain the ability to analyze the influx of data, full exploitation of modern storage hardware and systems, such as low-latency high-bandwidth NVMe devices and distributed object stores, becomes critical. To this end, the ROOT RNTuple I/O subsystem has been designed to address performance bottlenecks and shortcomings of ROOT's current state of the art TTree I/O subsystem. RNTuple provides a backwards-incompatible redesign of the TTree binary format and access API that evolves the ROOT event data I/O for the challenges of the upcoming decades. It focuses on a compact data format, on performance engineering for modern storage hardware, for instance through making parallel and asynchronous I/O calls by default, and on robust interfaces that are easy to use correctly. In this contribution, we evaluate the RNTuple performance for typical HEP analysis tasks. We compare the throughput delivered by RNTuple to popular I/O libraries outside HEP, such as HDF5 and Apache Parquet. We demonstrate the advantages of RNTuple for HEP analysis workflows and provide an outlook on the road to its use in production.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.