亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Numerous studies have underscored the significant privacy risks associated with various leakage patterns in encrypted data stores. Most existing systems that conceal leakage either (1) incur substantial overheads, (2) focus on specific subsets of leakage patterns, or (3) apply the same security notion across various workloads, thereby impeding the attainment of fine-tuned privacy-efficiency trade-offs. In light of various detrimental leakage patterns, this paper starts with an investigation into which specific leakage patterns require our focus respectively in the contexts of key-value, range-query, and dynamic workloads. Subsequently, we introduce new security notions tailored to the specific privacy requirements of these workloads. Accordingly, we present, SWAT, an efficient construction that progressively enables these workloads, while provably mitigating system-wide leakage via a suite of algorithms with tunable privacy-efficiency trade-offs. We conducted extensive experiments and compiled a detailed result analysis, showing the efficiency of our solution. SWAT is about $10.6\times$ slower than an encryption-only data store that reveals various leakage patterns and is $31.6\times$ faster than a trivially zero-leakage solution. Meanwhile, the performance of SWAT remains highly competitive compared to other designs that mitigate specific types of leakage.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Recent strides in Text-to-3D techniques have been propelled by distilling knowledge from powerful large text-to-image diffusion models (LDMs). Nonetheless, existing Text-to-3D approaches often grapple with challenges such as over-saturation, inadequate detailing, and unrealistic outputs. This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues. Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images based on the renderings of coarse 3D models. Although the generated images mostly alleviate the aforementioned issues, challenges such as view inconsistency and significant content variance persist due to the inherent generative nature of large diffusion models, posing extensive difficulties in leveraging these images effectively. To overcome this hurdle, we advocate integrating a discriminator alongside a novel Diffusion-GAN dual training strategy to guide the training of 3D models. For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data. We conduct a comprehensive set of experiments that demonstrate the effectiveness of our method over baseline approaches.

Vision-language models (VLMs), such as CLIP and ALIGN, are generally trained on datasets consisting of image-caption pairs obtained from the web. However, real-world multimodal datasets, such as healthcare data, are significantly more complex: each image (e.g. X-ray) is often paired with text (e.g. physician report) that describes many distinct attributes occurring in fine-grained regions of the image. We refer to these samples as exhibiting high pairwise complexity, since each image-text pair can be decomposed into a large number of region-attribute pairings. The extent to which VLMs can capture fine-grained relationships between image regions and textual attributes when trained on such data has not been previously evaluated. The first key contribution of this work is to demonstrate through systematic evaluations that as the pairwise complexity of the training dataset increases, standard VLMs struggle to learn region-attribute relationships, exhibiting performance degradations of up to 37% on retrieval tasks. In order to address this issue, we introduce ViLLA as our second key contribution. ViLLA, which is trained to capture fine-grained region-attribute relationships from complex datasets, involves two components: (a) a lightweight, self-supervised mapping model to decompose image-text samples into region-attribute pairs, and (b) a contrastive VLM to learn representations from generated region-attribute pairs. We demonstrate with experiments across four domains (synthetic, product, medical, and natural images) that ViLLA outperforms comparable VLMs on fine-grained reasoning tasks, such as zero-shot object detection (up to 3.6 AP50 points on COCO and 0.6 mAP points on LVIS) and retrieval (up to 14.2 R-Precision points).

Anomaly detection techniques enable effective anomaly detection and diagnosis in multi-variate time series data, which are of major significance for today's industrial applications. However, establishing an anomaly detection system that can be rapidly and accurately located is a challenging problem due to the lack of outlier tags, the high dimensional complexity of the data, memory bottlenecks in the actual hardware, and the need for fast reasoning. We have proposed an anomaly detection and diagnosis model -- DTAAD in this paper, based on Transformer, and Dual Temporal Convolutional Network(TCN). Our overall model will be an integrated design in which autoregressive model(AR) combines autoencoder(AE) structures, and scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences. Constructed by us, the Dual TCN-Attention Network (DTA) only uses a single layer of Transformer encoder in our baseline experiment, that belongs to an ultra-lightweight model. Our extensive experiments on six publicly datasets validate that DTAAD exceeds current most advanced baseline methods in both detection and diagnostic performance. Specifically, DTAAD improved F1 scores by $8.38\%$, and reduced training time by $99\%$ compared to baseline. The code and training scripts are publicly on GitHub at //github.com/Yu-Lingrui/DTAAD.

Autonomous agents empowered by Large Language Models (LLMs) have undergone significant improvements, enabling them to generalize across a broad spectrum of tasks. However, in real-world scenarios, cooperation among individuals is often required to enhance the efficiency and effectiveness of task accomplishment. Hence, inspired by human group dynamics, we propose a multi-agent framework \framework that can collaboratively and dynamically adjust its composition as a greater-than-the-sum-of-its-parts system. Our experiments demonstrate that \framework framework can effectively deploy multi-agent groups that outperform a single agent. Furthermore, we delve into the emergence of social behaviors among individual agents within a group during collaborative task accomplishment. In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups. Our codes for \framework will soon be released at \url{//github.com/OpenBMB/AgentVerse}.

Ensemble methods are commonly used in classification due to their remarkable performance. Achieving high accuracy in a data stream environment is a challenging task considering disruptive changes in the data distribution, also known as concept drift. A greater diversity of ensemble components is known to enhance prediction accuracy in such settings. Despite the diversity of components within an ensemble, not all contribute as expected to its overall performance. This necessitates a method for selecting components that exhibit high performance and diversity. We present a novel ensemble construction and maintenance approach based on MMR (Maximal Marginal Relevance) that dynamically combines the diversity and prediction accuracy of components during the process of structuring an ensemble. The experimental results on both four real and 11 synthetic datasets demonstrate that the proposed approach (DynED) provides a higher average mean accuracy compared to the five state-of-the-art baselines.

Unsupervised Domain Adaptation (UDA) approaches address the covariate shift problem by minimizing the distribution discrepancy between the source and target domains, assuming that the label distribution is invariant across domains. However, in the imbalanced domain adaptation (IDA) scenario, covariate and long-tailed label shifts both exist across domains. To tackle the IDA problem, some current research focus on minimizing the distribution discrepancies of each corresponding class between source and target domains. Such methods rely much on the reliable pseudo labels' selection and the feature distributions estimation for target domain, and the minority classes with limited numbers makes the estimations more uncertainty, which influences the model's performance. In this paper, we propose a cross-domain class discrepancy minimization method based on accumulative class-centroids for IDA (centroIDA). Firstly, class-based re-sampling strategy is used to obtain an unbiased classifier on source domain. Secondly, the accumulative class-centroids alignment loss is proposed for iterative class-centroids alignment across domains. Finally, class-wise feature alignment loss is used to optimize the feature representation for a robust classification boundary. A series of experiments have proved that our method outperforms other SOTA methods on IDA problem, especially with the increasing degree of label shift.

In addition to the unprecedented ability in imaginary creation, large text-to-image models are expected to take customized concepts in image generation. Existing works generally learn such concepts in an optimization-based manner, yet bringing excessive computation or memory burden. In this paper, we instead propose a learning-based encoder, which consists of a global and a local mapping networks for fast and accurate customized text-to-image generation. In specific, the global mapping network projects the hierarchical features of a given image into multiple new words in the textual word embedding space, i.e., one primary word for well-editable concept and other auxiliary words to exclude irrelevant disturbances (e.g., background). In the meantime, a local mapping network injects the encoded patch features into cross attention layers to provide omitted details, without sacrificing the editability of primary concepts. We compare our method with existing optimization-based approaches on a variety of user-defined concepts, and demonstrate that our method enables high-fidelity inversion and more robust editability with a significantly faster encoding process. Our code is publicly available at //github.com/csyxwei/ELITE.

With recent empirical observations, it has been argued that the most significant aspect of developing accurate language models may be the proper dataset content and training strategy compared to the number of neural parameters, training duration or dataset size. Following this argument, we opted to fine tune a one billion parameter size trained general purpose causal language model with a dataset curated on team statistics of the Italian football league first ten game weeks, using low rank adaptation. The limited training dataset was compiled based on a framework where a powerful commercial large language model provides distilled paragraphs and question answer pairs as intended. The training duration was kept relatively short to provide a basis for our minimal setting exploration. We share our key observations on the process related to developing a specific purpose language model which is intended to interpret soccer data with constrained resources in this article.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司