While many natural language inference (NLI) datasets target certain semantic phenomena, e.g., negation, tense & aspect, monotonicity, and presupposition, to the best of our knowledge, there is no NLI dataset that involves diverse types of spatial expressions and reasoning. We fill this gap by semi-automatically creating an NLI dataset for spatial reasoning, called SpaceNLI. The data samples are automatically generated from a curated set of reasoning patterns, where the patterns are annotated with inference labels by experts. We test several SOTA NLI systems on SpaceNLI to gauge the complexity of the dataset and the system's capacity for spatial reasoning. Moreover, we introduce a Pattern Accuracy and argue that it is a more reliable and stricter measure than the accuracy for evaluating a system's performance on pattern-based generated data samples. Based on the evaluation results we find that the systems obtain moderate results on the spatial NLI problems but lack consistency per inference pattern. The results also reveal that non-projective spatial inferences (especially due to the "between" preposition) are the most challenging ones.
LLMs usually exhibit limitations in their ability to incorporate new knowledge, the generation of hallucinations, and the transparency of their decision-making process. In this paper, we explore how to prompt LLMs with knowledge graphs (KG), working as a remedy to engage LLMs with up-to-date knowledge and elicit the reasoning pathways from LLMs. Specifically, we build a prompting pipeline that endows LLMs with the capability of comprehending KG inputs and inferring with a combined implicit knowledge and the retrieved external knowledge. In addition, we investigate eliciting the mind map on which LLMs perform the reasoning and generate the answers. It is identified that the produced mind map exhibits the reasoning pathways of LLMs grounded on the ontology of knowledge, hence bringing the prospects of probing and gauging LLM inference in production. The experiments on three question & answering datasets also show that MindMap prompting leads to a striking empirical gain. For instance, prompting a GPT-3.5 with MindMap yields an overwhelming performance over GPT-4 consistently. We also demonstrate that with structured facts retrieved from KG, MindMap can outperform a series of prompting-with-document-retrieval methods, benefiting from more accurate, concise, and comprehensive knowledge from KGs.
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.
Large language models (LLMs) have gained considerable attention for Artificial Intelligence Generated Content (AIGC), particularly with the emergence of ChatGPT. However, the direct adaptation of continuous speech to LLMs that process discrete tokens remains an unsolved challenge, hindering the application of LLMs for speech generation. The advanced speech LMs are in the corner, as that speech signals encapsulate a wealth of information, including speaker and emotion, beyond textual data alone. Prompt tuning has demonstrated notable gains in parameter efficiency and competitive performance on some speech classification tasks. However, the extent to which prompts can effectively elicit generation tasks from speech LMs remains an open question. In this paper, we present pioneering research that explores the application of prompt tuning to stimulate speech LMs for various generation tasks, within a unified framework called SpeechGen, with around 10M trainable parameters. The proposed unified framework holds great promise for efficiency and effectiveness, particularly with the imminent arrival of advanced speech LMs, which will significantly enhance the capabilities of the framework. The code and demos of SpeechGen will be available on the project website: \url{//ga642381.github.io/SpeechPrompt/speechgen}
Pre-trained language models (PLMs) contain vast amounts of factual knowledge, but how the knowledge is stored in the parameters remains unclear. This paper delves into the complex task of understanding how factual knowledge is stored in multilingual PLMs, and introduces the Architecture-adapted Multilingual Integrated Gradients method, which successfully localizes knowledge neurons more precisely compared to current methods, and is more universal across various architectures and languages. Moreover, we conduct an in-depth exploration of knowledge neurons, leading to the following two important discoveries: (1) The discovery of Language-Independent Knowledge Neurons, which store factual knowledge in a form that transcends language. We design cross-lingual knowledge editing experiments, demonstrating that the PLMs can accomplish this task based on language-independent neurons; (2) The discovery of Degenerate Knowledge Neurons, a novel type of neuron showing that different knowledge neurons can store the same fact. Its property of functional overlap endows the PLMs with a robust mastery of factual knowledge. We design fact-checking experiments, proving that the degenerate knowledge neurons can help the PLMs to detect wrong facts. Experiments corroborate these findings, shedding light on the mechanisms of factual knowledge storage in multilingual PLMs, and contribute valuable insights to the field. The source code will be made publicly available for further research.
Large language models (LLMs), such as ChatGPT, have emerged with astonishing capabilities approaching artificial general intelligence. While providing convenience for various societal needs, LLMs have also lowered the cost of generating harmful content. Consequently, LLM developers have deployed semantic-level defenses to recognize and reject prompts that may lead to inappropriate content. Unfortunately, these defenses are not foolproof, and some attackers have crafted "jailbreak" prompts that temporarily hypnotize the LLM into forgetting content defense rules and answering any improper questions. To date, there is no clear explanation of the principles behind these semantic-level attacks and defenses in both industry and academia. This paper investigates the LLM jailbreak problem and proposes an automatic jailbreak method for the first time. We propose the concept of a semantic firewall and provide three technical implementation approaches. Inspired by the attack that penetrates traditional firewalls through reverse tunnels, we introduce a "self-deception" attack that can bypass the semantic firewall by inducing LLM to generate prompts that facilitate jailbreak. We generated a total of 2,520 attack payloads in six languages (English, Russian, French, Spanish, Chinese, and Arabic) across seven virtual scenarios, targeting the three most common types of violations: violence, hate, and pornography. The experiment was conducted on two models, namely the GPT-3.5-Turbo and GPT-4. The success rates on the two models were 86.2% and 67%, while the failure rates were 4.7% and 2.2%, respectively. This highlighted the effectiveness of the proposed attack method. All experimental code and raw data will be released as open-source to inspire future research. We believe that manipulating AI behavior through carefully crafted prompts will become an important research direction in the future.
Spurred by the recent rapid increase in the development and distribution of large language models (LLMs) across industry and academia, much recent work has drawn attention to safety- and security-related threats and vulnerabilities of LLMs, including in the context of potentially criminal activities. Specifically, it has been shown that LLMs can be misused for fraud, impersonation, and the generation of malware; while other authors have considered the more general problem of AI alignment. It is important that developers and practitioners alike are aware of security-related problems with such models. In this paper, we provide an overview of existing - predominantly scientific - efforts on identifying and mitigating threats and vulnerabilities arising from LLMs. We present a taxonomy describing the relationship between threats caused by the generative capabilities of LLMs, prevention measures intended to address such threats, and vulnerabilities arising from imperfect prevention measures. With our work, we hope to raise awareness of the limitations of LLMs in light of such security concerns, among both experienced developers and novel users of such technologies.
Large language models encode a vast amount of semantic knowledge and possess remarkable understanding and reasoning capabilities. Previous research has explored how to ground language models in robotic tasks to ensure that the sequences generated by the language model are both logically correct and practically executable. However, low-level execution may deviate from the high-level plan due to environmental perturbations or imperfect controller design. In this paper, we propose DoReMi, a novel language model grounding framework that enables immediate Detection and Recovery from Misalignments between plan and execution. Specifically, LLMs are leveraged for both planning and generating constraints for planned steps. These constraints can indicate plan-execution misalignments and we use a vision question answering (VQA) model to check constraints during low-level skill execution. If certain misalignment occurs, our method will call the language model to re-plan in order to recover from misalignments. Experiments on various complex tasks including robot arms and humanoid robots demonstrate that our method can lead to higher task success rates and shorter task completion times. Videos of DoReMi are available at //sites.google.com/view/doremi-paper.
The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs.
Temporal sentence grounding in videos (TSGV), a.k.a., natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.