Probabilistic programming languages aid developers performing Bayesian inference. These languages provide programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be extended to work in a streaming context. ProbZelus showed that while delayed sampling could be effectively deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is not guaranteed to use a bounded amount of memory over the course of the execution of the program. In this paper, we the present conditions on a probabilistic program's execution under which delayed sampling will execute in bounded memory. The two conditions are dataflow properties of the core operations of delayed sampling: the $m$-consumed property and the unseparated paths property. A program executes in bounded memory under delayed sampling if, and only if, it satisfies the $m$-consumed and unseparated paths properties. We propose a static analysis that abstracts over these properties to soundly ensure that any program that passes the analysis satisfies these properties, and thus executes in bounded memory under delayed sampling.
In recent years, researchers have made significant progress in devising reinforcement-learning algorithms for optimizing linear temporal logic (LTL) objectives and LTL-like objectives. Despite these advancements, there are fundamental limitations to how well this problem can be solved that previous studies have alluded to but, to our knowledge, have not examined in depth. In this paper, we address theoretically the hardness of learning with general LTL objectives. We formalize the problem under the probably approximately correct learning in Markov decision processes (PAC-MDP) framework, a standard framework for measuring sample complexity in reinforcement learning. In this formalization, we prove that the optimal policy for any LTL formula is PAC-MDP-learnable only if the formula is in the most limited class in the LTL hierarchy, consisting of only finite-horizon-decidable properties. Practically, our result implies that it is impossible for a reinforcement-learning algorithm to obtain a PAC-MDP guarantee on the performance of its learned policy after finitely many interactions with an unconstrained environment for non-finite-horizon-decidable LTL objectives.
By the asymptotic oracle property, non-convex penalties represented by minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) have attracted much attentions in high-dimensional data analysis, and have been widely used in signal processing, image restoration, matrix estimation, etc. However, in view of their non-convex and non-smooth characteristics, they are computationally challenging. Almost all existing algorithms converge locally, and the proper selection of initial values is crucial. Therefore, in actual operation, they often combine a warm-starting technique to meet the rigid requirement that the initial value must be sufficiently close to the optimal solution of the corresponding problem. In this paper, based on the DC (difference of convex functions) property of MCP and SCAD penalties, we aim to design a global two-stage algorithm for the high-dimensional least squares linear regression problems. A key idea for making the proposed algorithm to be efficient is to use the primal dual active set with continuation (PDASC) method, which is equivalent to the semi-smooth Newton (SSN) method, to solve the corresponding sub-problems. Theoretically, we not only prove the global convergence of the proposed algorithm, but also verify that the generated iterative sequence converges to a d-stationary point. In terms of computational performance, the abundant research of simulation and real data show that the algorithm in this paper is superior to the latest SSN method and the classic coordinate descent (CD) algorithm for solving non-convex penalized high-dimensional linear regression problems.
Generating user activity is a key capability for both evaluating security monitoring tools as well as improving the credibility of attacker analysis platforms (e.g., honeynets). In this paper, to generate this activity, we instrument each machine by means of an external agent. This agent combines both deterministic and deep learning based methods to adapt to different environment (e.g., multiple OS, software versions, etc.), while maintaining high performances. We also propose conditional text generation models to facilitate the creation of conversations and documents to accelerate the definition of coherent, system-wide, life scenarios.
Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.
Distance metric learning based on triplet loss has been applied with success in a wide range of applications such as face recognition, image retrieval, speaker change detection and recently recommendation with the CML model. However, as we show in this article, CML requires large batches to work reasonably well because of a too simplistic uniform negative sampling strategy for selecting triplets. Due to memory limitations, this makes it difficult to scale in high-dimensional scenarios. To alleviate this problem, we propose here a 2-stage negative sampling strategy which finds triplets that are highly informative for learning. Our strategy allows CML to work effectively in terms of accuracy and popularity bias, even when the batch size is an order of magnitude smaller than what would be needed with the default uniform sampling. We demonstrate the suitability of the proposed strategy for recommendation and exhibit consistent positive results across various datasets.
This paper proposes a model-free Reinforcement Learning (RL) algorithm to synthesise policies for an unknown Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), then construct a synchronized MDP between the automaton and the original MDP. According to the resulting LDBA, a reward function is then defined over the state-action pairs of the product MDP. With this reward function, our algorithm synthesises a policy whose traces satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
A fundamental computation for statistical inference and accurate decision-making is to compute the marginal probabilities or most probable states of task-relevant variables. Probabilistic graphical models can efficiently represent the structure of such complex data, but performing these inferences is generally difficult. Message-passing algorithms, such as belief propagation, are a natural way to disseminate evidence amongst correlated variables while exploiting the graph structure, but these algorithms can struggle when the conditional dependency graphs contain loops. Here we use Graph Neural Networks (GNNs) to learn a message-passing algorithm that solves these inference tasks. We first show that the architecture of GNNs is well-matched to inference tasks. We then demonstrate the efficacy of this inference approach by training GNNs on a collection of graphical models and showing that they substantially outperform belief propagation on loopy graphs. Our message-passing algorithms generalize out of the training set to larger graphs and graphs with different structure.
Probabilistic topic models are popular unsupervised learning methods, including probabilistic latent semantic indexing (pLSI) and latent Dirichlet allocation (LDA). By now, their training is implemented on general purpose computers (GPCs), which are flexible in programming but energy-consuming. Towards low-energy implementations, this paper investigates their training on an emerging hardware technology called the neuromorphic multi-chip systems (NMSs). NMSs are very effective for a family of algorithms called spiking neural networks (SNNs). We present three SNNs to train topic models. The first SNN is a batch algorithm combining the conventional collapsed Gibbs sampling (CGS) algorithm and an inference SNN to train LDA. The other two SNNs are online algorithms targeting at both energy- and storage-limited environments. The two online algorithms are equivalent with training LDA by using maximum-a-posterior estimation and maximizing the semi-collapsed likelihood, respectively. They use novel, tailored ordinary differential equations for stochastic optimization. We simulate the new algorithms and show that they are comparable with the GPC algorithms, while being suitable for NMS implementation. We also propose an extension to train pLSI and a method to prune the network to obey the limited fan-in of some NMSs.
We present an implementation of a probabilistic first-order logic called TensorLog, in which classes of logical queries are compiled into differentiable functions in a neural-network infrastructure such as Tensorflow or Theano. This leads to a close integration of probabilistic logical reasoning with deep-learning infrastructure: in particular, it enables high-performance deep learning frameworks to be used for tuning the parameters of a probabilistic logic. Experimental results show that TensorLog scales to problems involving hundreds of thousands of knowledge-base triples and tens of thousands of examples.