By the asymptotic oracle property, non-convex penalties represented by minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) have attracted much attentions in high-dimensional data analysis, and have been widely used in signal processing, image restoration, matrix estimation, etc. However, in view of their non-convex and non-smooth characteristics, they are computationally challenging. Almost all existing algorithms converge locally, and the proper selection of initial values is crucial. Therefore, in actual operation, they often combine a warm-starting technique to meet the rigid requirement that the initial value must be sufficiently close to the optimal solution of the corresponding problem. In this paper, based on the DC (difference of convex functions) property of MCP and SCAD penalties, we aim to design a global two-stage algorithm for the high-dimensional least squares linear regression problems. A key idea for making the proposed algorithm to be efficient is to use the primal dual active set with continuation (PDASC) method, which is equivalent to the semi-smooth Newton (SSN) method, to solve the corresponding sub-problems. Theoretically, we not only prove the global convergence of the proposed algorithm, but also verify that the generated iterative sequence converges to a d-stationary point. In terms of computational performance, the abundant research of simulation and real data show that the algorithm in this paper is superior to the latest SSN method and the classic coordinate descent (CD) algorithm for solving non-convex penalized high-dimensional linear regression problems.
Functional constrained optimization is becoming more and more important in machine learning and operations research. Such problems have potential applications in risk-averse machine learning, semisupervised learning, and robust optimization among others. In this paper, we first present a novel Constraint Extrapolation (ConEx) method for solving convex functional constrained problems, which utilizes linear approximations of the constraint functions to define the extrapolation (or acceleration) step. We show that this method is a unified algorithm that achieves the best-known rate of convergence for solving different functional constrained convex composite problems, including convex or strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were in fact obtained for the first time in the literature. In addition, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not require the projection of Lagrangian multipliers into a (possibly unknown) bounded set. Second, for nonconvex functional constrained problems, we introduce a new proximal point method that transforms the initial nonconvex problem into a sequence of convex problems by adding quadratic terms to both the objective and constraints. Under a certain MFCQ-type assumption, we establish the convergence and rate of convergence of this method to KKT points when the convex subproblems are solved exactly or inexactly. For large-scale and stochastic problems, we present a more practical proximal point method in which the approximate solutions of the subproblems are computed by the aforementioned ConEx method. To the best of our knowledge, most of these convergence and complexity results of the proximal point method for nonconvex problems also seem to be new in the literature.
We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions. The zigzag process has the advantage of not requiring time discretization for implementation, and that each proposed bouncing event requires only one evaluation of partial derivative of the potential, while its convergence rate is dimension independent. Using these properties, we prove that the zigzag sampling algorithm achieves $\varepsilon$ error in chi-square divergence with a computational cost equivalent to $O\bigl(\kappa^2 d^\frac{1}{2}(\log\frac{1}{\varepsilon})^{\frac{3}{2}}\bigr)$ gradient evaluations in the regime $\kappa \ll \frac{d}{\log d}$ under a warm start assumption, where $\kappa$ is the condition number and $d$ is the dimension.
Motivated by applications in reinforcement learning (RL), we study a nonlinear stochastic approximation (SA) algorithm under Markovian noise, and establish its finite-sample convergence bounds under various stepsizes. Specifically, we show that when using constant stepsize (i.e., $\alpha_k\equiv \alpha$), the algorithm achieves exponential fast convergence to a neighborhood (with radius $O(\alpha\log(1/\alpha))$) around the desired limit point. When using diminishing stepsizes with appropriate decay rate, the algorithm converges with rate $O(\log(k)/k)$. Our proof is based on Lyapunov drift arguments, and to handle the Markovian noise, we exploit the fast mixing of the underlying Markov chain. To demonstrate the generality of our theoretical results on Markovian SA, we use it to derive the finite-sample bounds of the popular $Q$-learning with linear function approximation algorithm, under a condition on the behavior policy. Importantly, we do not need to make the assumption that the samples are i.i.d., and do not require an artificial projection step in the algorithm to maintain the boundedness of the iterates. Numerical simulations corroborate our theoretical results.
We study the fundamental problem of ReLU regression, where the goal is to fit Rectified Linear Units (ReLUs) to data. This supervised learning task is efficiently solvable in the realizable setting, but is known to be computationally hard with adversarial label noise. In this work, we focus on ReLU regression in the Massart noise model, a natural and well-studied semi-random noise model. In this model, the label of every point is generated according to a function in the class, but an adversary is allowed to change this value arbitrarily with some probability, which is {\em at most} $\eta < 1/2$. We develop an efficient algorithm that achieves exact parameter recovery in this model under mild anti-concentration assumptions on the underlying distribution. Such assumptions are necessary for exact recovery to be information-theoretically possible. We demonstrate that our algorithm significantly outperforms naive applications of $\ell_1$ and $\ell_2$ regression on both synthetic and real data.
Temporal difference (TD) learning is a widely used method to evaluate policies in reinforcement learning. While many TD learning methods have been developed in recent years, little attention has been paid to preserving privacy and most of the existing approaches might face the concerns of data privacy from users. To enable complex representative abilities of policies, in this paper, we consider preserving privacy in TD learning with nonlinear value function approximation. This is challenging because such a nonlinear problem is usually studied in the formulation of stochastic nonconvex-strongly-concave optimization to gain finite-sample analysis, which would require simultaneously preserving the privacy on primal and dual sides. To this end, we employ a momentum-based stochastic gradient descent ascent to achieve a single-timescale algorithm, and achieve a good trade-off between meaningful privacy and utility guarantees of both the primal and dual sides by perturbing the gradients on both sides using well-calibrated Gaussian noises. As a result, our DPTD algorithm could provide $(\epsilon,\delta)$-differential privacy (DP) guarantee for the sensitive information encoded in transitions and retain the original power of TD learning, with the utility upper bounded by $\widetilde{\mathcal{O}}(\frac{(d\log(1/\delta))^{1/8}}{(n\epsilon)^{1/4}})$ (The tilde in this paper hides the log factor.), where $n$ is the trajectory length and $d$ is the dimension. Extensive experiments conducted in OpenAI Gym show the advantages of our proposed algorithm.
This paper studies robust regression for data on Riemannian manifolds. Geodesic regression is the generalization of linear regression to a setting with a manifold-valued dependent variable and one or more real-valued independent variables. The existing work on geodesic regression uses the sum-of-squared errors to find the solution, but as in the classical Euclidean case, the least-squares method is highly sensitive to outliers. In this paper, we use M-type estimators, including the $L_1$, Huber and Tukey biweight estimators, to perform robust geodesic regression, and describe how to calculate the tuning parameters for the latter two. We also show that, on compact symmetric spaces, all M-type estimators are maximum likelihood estimators, and argue for the overall superiority of the $L_1$ estimator over the $L_2$ and Huber estimators on high-dimensional manifolds and over the Tukey biweight estimator on compact high-dimensional manifolds. Results from numerical examples, including analysis of real neuroimaging data, demonstrate the promising empirical properties of the proposed approach.
Graph alignment aims at finding the vertex correspondence between two correlated graphs, a task that frequently occurs in graph mining applications such as social network analysis. Attributed graph alignment is a variant of graph alignment, in which publicly available side information or attributes are exploited to assist graph alignment. Existing studies on attributed graph alignment focus on either theoretical performance without computational constraints or empirical performance of efficient algorithms. This motivates us to investigate efficient algorithms with theoretical performance guarantee. In this paper, we propose two polynomial-time algorithms that exactly recover the vertex correspondence with high probability. The feasible region of the proposed algorithms is near optimal compared to the information-theoretic limits. When specialized to the seeded graph alignment problem, the proposed algorithms strictly improve the best known feasible region for exact alignment by polynomial-time algorithms.
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.
This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.