亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is well known that it is impossible to construct useful confidence intervals (CIs) about the mean or median of a response $Y$ conditional on features $X = x$ without making strong assumptions about the joint distribution of $X$ and $Y$. This paper introduces a new framework for reasoning about problems of this kind by casting the conditional problem at different levels of resolution, ranging from coarse to fine localization. In each of these problems, we consider local quantiles defined as the marginal quantiles of $Y$ when $(X,Y)$ is resampled in such a way that samples $X$ near $x$ are up-weighted while the conditional distribution $Y \mid X$ does not change. We then introduce the Weighted Quantile method, which asymptotically produces the uniformly most accurate confidence intervals for these local quantiles no matter the (unknown) underlying distribution. Another method, namely, the Quantile Rejection method, achieves finite sample validity under no assumption whatsoever. We conduct extensive numerical studies demonstrating that both of these methods are valid. In particular, we show that the Weighted Quantile procedure achieves nominal coverage as soon as the effective sample size is in the range of 10 to 20.

相關內容

Positive-Unlabeled (PU) Learning is a challenge presented by binary classification problems where there is an abundance of unlabeled data along with a small number of positive data instances, which can be used to address chronic disease screening problem. State-of-the-art PU learning methods have resulted in the development of various risk estimators, yet they neglect the differences among distinct populations. To address this issue, we present a novel Positive-Unlabeled Learning Tree (PUtree) algorithm. PUtree is designed to take into account communities such as different age or income brackets, in tasks of chronic disease prediction. We propose a novel approach for binary decision-making, which hierarchically builds community-based PU models and then aggregates their deliverables. Our method can explicate each PU model on the tree for the optimized non-leaf PU node splitting. Furthermore, a mask-recovery data augmentation strategy enables sufficient training of the model in individual communities. Additionally, the proposed approach includes an adversarial PU risk estimator to capture hierarchical PU-relationships, and a model fusion network that integrates data from each tree path, resulting in robust binary classification results. We demonstrate the superior performance of PUtree as well as its variants on two benchmarks and a new diabetes-prediction dataset.

The Ultra Weak Variational Formulation (UWVF) is a special Trefftz discontinuous Galerkin method, here applied to the time-harmonic Maxwell's equations. The method uses superpositions of plane waves to represent solutions element by element on a finite element mesh. We discuss the use of our parallel UWVF implementation called ParMax, and concentrate on methods for obtaining high order solutions in the presence of scatterers with piecewise smooth boundaries. In particular, we show how curved surface triangles can be incorporated in the UWVF. This requires quadrature to assemble the system matrices. We also show how to implement a total field and scattered field approach, together with the transmission conditions across an interface to handle resistive sheets. We note also that a wide variety of element shapes can be used, that the elements can be large compared to the wavelength of the radiation, and that a matrix free version is easy to implement (although computationally costly). Our contributions are illustrated by several numerical examples showing that curved elements can improve the efficiency of the UWVF, and that the method accurately handles resistive screens as well as PEC and penetrable scatterers. Using large curved elements and the matrix free approach, we are able to simulate scattering from an aircraft at X-band frequencies. The innovations here demonstrate the applicability of the UWVF for industrial examples.

Robots must make and break contact to interact with the world and perform useful tasks. However, planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver, and present a variety of simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20 degree-of-freedom bi-manual manipulation task.

As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.

We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems with superior accuracy. A major drawback of existing filtering methods, e.g., particle filters or ensemble Kalman filters, is the low accuracy in handling high-dimensional and highly nonlinear problems. EnSF attacks this challenge by exploiting the score-based diffusion model, defined in a pseudo-temporal domain, to characterizing the evolution of the filtering density. EnSF stores the information of the recursively updated filtering density function in the score function, in stead of storing the information in a set of finite Monte Carlo samples (used in particle filters and ensemble Kalman filters). Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation that uses mini-batch-based Monte Carlo estimator to directly approximate the score function at any pseudo-spatial-temporal location, which provides sufficient accuracy in solving high-dimensional nonlinear problems as well as saves tremendous amount of time spent on training neural networks. Another essential aspect of EnSF is its analytical update step, gradually incorporating data information into the score function, which is crucial in mitigating the degeneracy issue faced when dealing with very high-dimensional nonlinear filtering problems. High-dimensional Lorenz systems are used to demonstrate the performance of our method. EnSF provides surprisingly impressive performance in reliably tracking extremely high-dimensional Lorenz systems (up to 1,000,000 dimension) with highly nonlinear observation processes, which is a well-known challenging problem for existing filtering methods.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司