Comparative to conventional 2D interaction methods, virtual reality (VR) demonstrates an opportunity for unique interface and interaction design decisions. Currently, this poses a challenge when developing an accessible VR experience as existing interaction techniques may not be usable by all users. It was discovered that many traditional 2D interface interaction methods have been directly converted to work in a VR space with little alteration to the input mechanism, such as the use of a laser pointer designed to that of a traditional cursor. It is recognized that distanceindependent millimetres can support designers in developing interfaces that scale in virtual worlds. Relevantly, Fitts law states that as distance increases, user movements are increasingly slower and performed less accurately. In this paper we propose the use of a low pass filter, to normalize user input noise, alleviating fine motor requirements during ray-based interaction. A development study was conducted to understand the feasibility of implementing such a filter and explore its effects on end users experience. It demonstrates how an algorithm can provide an opportunity for a more accurate and consequently less frustrating experience by filtering and reducing involuntary hand tremors. Further discussion on existing VR design philosophies is also conducted, analysing evidence that supports multisensory feedback and psychological models. The completed study can be downloaded from GitHub.
We propose a new method for combining in situ buoy measurements with Earth system models (ESMs) to improve the accuracy of temperature predictions in the ocean. The technique utilizes the dynamics \textit{and} modes identified in ESMs alongside buoy measurements to improve accuracy while preserving features such as seasonality. We use this technique, which we call Dynamic Basis Function Interpolation, to correct errors in localized temperature predictions made by the Model for Prediction Across Scales Ocean component (MPAS-O) with the Global Drifter Program's in situ ocean buoy dataset.
Although language models (LMs) demonstrate exceptional capabilities on various tasks, they are potentially vulnerable to extraction attacks, which represent a significant privacy risk. To mitigate the privacy concerns of LMs, machine unlearning has emerged as an important research area, which is utilized to induce the LM to selectively forget about some of its training data. While completely retraining the model will guarantee successful unlearning and privacy assurance, it is impractical for LMs, as it would be time-consuming and resource-intensive. Prior works efficiently unlearn the target token sequences, but upon subsequent iterations, the LM displays significant degradation in performance. In this work, we propose Privacy Protection via Optimal Parameters (POP), a novel unlearning method that effectively forgets the target token sequences from the pretrained LM by applying optimal gradient updates to the parameters. Inspired by the gradient derivation of complete retraining, we approximate the optimal training objective that successfully unlearns the target sequence while retaining the knowledge from the rest of the training data. Experimental results demonstrate that POP exhibits remarkable retention performance post-unlearning across 9 classification and 4 dialogue benchmarks, outperforming the state-of-the-art by a large margin. Furthermore, we introduce Remnant Memorization Accuracy that quantifies privacy risks based on token likelihood and validate its effectiveness through both qualitative and quantitative analyses.
Quantum computing and modern tensor-based computing have a strong connection, which is especially demonstrated by simulating quantum computations with tensor networks. The other direction is less studied: quantum computing is not often applied to tensor-based problems. Considering tensor decompositions, we focus on discovering practical matrix multiplication algorithms and develop two algorithms to compute decompositions on quantum computers. The algorithms are expressed as higher-order unconstrained binary optimization (HUBO) problems, which are translated into quadratic unconstrained binary optimization (QUBO) problems. Our first algorithm is decompositional to keep the optimization problem feasible for the current quantum devices. Starting from a suitable initial point, the algorithm discovers tensor decomposition corresponding to the famous Strassen matrix multiplication algorithm, utilizing the current quantum annealers. Since the decompositional algorithm does not guarantee minimal length for found tensor decompositions, we develop a holistic algorithm that can find fixed-length decompositions. Theoretically, by fixing a shorter length than the length for the best-known decomposition, we can ensure that the solution to the holistic optimization problem would yield faster matrix multiplication algorithms.
To evaluate knowledge in large language models (LLMs), current methods query the model and then evaluate its generated responses. In this work, we ask whether evaluation can be done $\textit{before}$ the model has generated any text. Concretely, is it possible to estimate how knowledgeable a model is about a certain entity, only from its internal computation? We study this question with two tasks: given a subject entity, the goal is to predict (a) the ability of the model to answer common questions about the entity, and (b) the factuality of responses generated by the model about the entity. Experiments with a variety of LLMs show that KEEN, a simple probe trained over internal subject representations, succeeds at both tasks - strongly correlating with both the QA accuracy of the model per-subject and FActScore, a recent factuality metric in open-ended generation. Moreover, KEEN naturally aligns with the model's hedging behavior and faithfully reflects changes in the model's knowledge after fine-tuning. Lastly, we show a more interpretable yet equally performant variant of KEEN, which highlights a small set of tokens that correlates with the model's lack of knowledge. Being simple and lightweight, KEEN can be leveraged to identify gaps and clusters of entity knowledge in LLMs, and guide decisions such as augmenting queries with retrieval.
Modular, distributed and multi-core architectures are currently considered a promising approach for scalability of quantum computing systems. The integration of multiple Quantum Processing Units necessitates classical and quantum-coherent communication, introducing challenges related to noise and quantum decoherence in quantum state transfers between cores. Optimizing communication becomes imperative, and the compilation and mapping of quantum circuits onto physical qubits must minimize state transfers while adhering to architectural constraints. The compilation process, inherently an NP-hard problem, demands extensive search times even with a small number of qubits to be solved to optimality. To address this challenge efficiently, we advocate for the utilization of heuristic mappers that can rapidly generate solutions. In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn these heuristics for a specific multi-core architecture. Our DRL agent incorporates a Transformer encoder and Graph Neural Networks. It encodes quantum circuits using self-attention mechanisms and produce outputs through an attention-based pointer mechanism that directly signifies the probability of matching logical qubits with physical cores. This enables the selection of optimal cores for logical qubits efficiently. Experimental evaluations show that the proposed method can outperform baseline approaches in terms of reducing inter-core communications and minimizing online time-to-solution. This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based heuristic approach for efficient quantum circuit compilation and mapping.
Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.