One of the most widely known and important applications of probability and statistics is scientific polling to forecast election results. In 1936, Gallup predicted correctly the victory of Roosevelt over Landon in the US presidential election, using scientific sampling of 3,000 persons, whereas the Literary Digest failed using 2.4 million answers to 10 million mailed questionnaires to automobile and telephone owners. Since then, polls have grown to be a flourishing and very influential and important industry, spreading around the world. Polls have mostly been accurate in the US presidential elections, with a few exceptions. Their two most notable failures were their wrong predictions of the US 1948 and 2016 presidential elections. Most polls failed too in the 2016 UK Referendum, in the 2014 and 2019 India Lok Sabha elections, and in the US 2020 presidential election, even though in the latter three they did predict the winner. We discuss these polls in the present paper. The failure in 1948 was due to non-random sampling. In 2016 and 2020 it was mainly due to the problem of non-response and possible biases of the pollsters. In 2014 and 2019 it was due to non-response and political biases of the polling agencies and news outlets that produced the polls.
While digital divide studies primarily focused on access to information and communications technology (ICT) in the past, its influence on other associated dimensions such as privacy is becoming critical with a far-reaching impact on the people and society. For example, the various levels of government legislation and compliance on information privacy worldwide have created a new era of digital divide in the privacy preservation domain. In this article, the concept "digital privacy divide (DPD)" is introduced to describe the perceived gap in the privacy preservation of individuals based on the geopolitical location of different countries. To better understand the DPD phenomenon, we created an online questionnaire and collected answers from more than 700 respondents from four different countries (the United States, Germany, Bangladesh, and India) who come from two distinct cultural orientations as per Hofstede's individualist vs. collectivist society. However, our results revealed some interesting findings. DPD does not depend on Hofstede's cultural orientation of the countries. For example, individuals residing in Germany and Bangladesh share similar privacy concerns, while there is a significant similarity among individuals residing in the United States and India. Moreover, while most respondents acknowledge the importance of privacy legislation to protect their digital privacy, they do not mind their governments to allow domestic companies and organizations collecting personal data on individuals residing outside their countries, if there are economic, employment, and crime prevention benefits. These results suggest a social dilemma in the perceived privacy preservation, which could be dependent on many other contextual factors beyond government legislation and countries' cultural orientation.
One of the most important incidents in the world in 2020 is the outbreak of the Coronavirus. Users on social networks publish a large number of comments about this event. These comments contain important hidden information of public opinion regarding this pandemic. In this research, a large number of Coronavirus-related tweets are considered and analyzed using natural language processing and information retrieval science. Initially, the location of the tweets is determined using a dictionary prepared through the Geo-Names geographic database, which contains detailed and complete information of places such as city names, streets, and postal codes. Then, using a large dictionary prepared from the terms of economics, related tweets are extracted and sentiments corresponded to tweets are analyzed with the help of the RoBERTa language-based model, which has high accuracy and good performance. Finally, the frequency chart of tweets related to the economy and their sentiment scores (positive and negative tweets) is plotted over time for the entire world and the top 10 economies. From the analysis of the charts, we learn that the reason for publishing economic tweets is not only the increase in the number of people infected with the Coronavirus but also imposed restrictions and lockdowns in countries. The consequences of these restrictions include the loss of millions of jobs and the economic downturn.
Automatic text summarization has been studied in a variety of domains and languages. However, this does not hold for the Russian language. To overcome this issue, we present Gazeta, the first dataset for summarization of Russian news. We describe the properties of this dataset and benchmark several extractive and abstractive models. We demonstrate that the dataset is a valid task for methods of text summarization for Russian. Additionally, we prove the pretrained mBART model to be useful for Russian text summarization.
Opinion formation and persuasion in argumentation are affected by three major factors: the argument itself, the source of the argument, and the properties of the audience. Understanding the role of each and the interplay between them is crucial for obtaining insights regarding argument interpretation and generation. It is particularly important for building effective argument generation systems that can take both the discourse and the audience characteristics into account. Having such personalized argument generation systems would be helpful to expose individuals to different viewpoints and help them make a more fair and informed decision on an issue. Even though studies in Social Sciences and Psychology have shown that source and audience effects are essential components of the persuasion process, most research in computational persuasion has focused solely on understanding the characteristics of persuasive language. In this thesis, we make several contributions to understand the relative effect of the source, audience, and language in computational persuasion. We first introduce a large-scale dataset with extensive user information to study these factors' effects simultaneously. Then, we propose models to understand the role of the audience's prior beliefs on their perception of arguments. We also investigate the role of social interactions and engagement in understanding users' success in online debating over time. We find that the users' prior beliefs and social interactions play an essential role in predicting their success in persuasion. Finally, we explore the importance of incorporating contextual information to predict argument impact and show improvements compared to encoding only the text of the arguments.
Textual redundancy is one of the main challenges to ensuring that legal texts remain comprehensible and maintainable. Drawing inspiration from the refactoring literature in software engineering, which has developed methods to expose and eliminate duplicated code, we introduce the duplicated phrase detection problem for legal texts and propose the Dupex algorithm to solve it. Leveraging the Minimum Description Length principle from information theory, Dupex identifies a set of duplicated phrases, called patterns, that together best compress a given input text. Through an extensive set of experiments on the Titles of the United States Code, we confirm that our algorithm works well in practice: Dupex will help you simplify your law.
Road-vehicle accidents are mostly due to human errors, and many such accidents could be avoided by continuously monitoring the driver. Driver monitoring (DM) is a topic of growing interest in the automotive industry, and it will remain relevant for all vehicles that are not fully autonomous, and thus for decades for the average vehicle owner. The present paper focuses on the first step of DM, which consists in characterizing the state of the driver. Since DM will be increasingly linked to driving automation (DA), this paper presents a clear view of the role of DM at each of the six SAE levels of DA. This paper surveys the state of the art of DM, and then synthesizes it, providing a unique, structured, polychotomous view of the many characterization techniques of DM. Informed by the survey, the paper characterizes the driver state along the five main dimensions--called here "(sub)states"--of drowsiness, mental workload, distraction, emotions, and under the influence. The polychotomous view of DM is presented through a pair of interlocked tables that relate these states to their indicators (e.g., the eye-blink rate) and the sensors that can access each of these indicators (e.g., a camera). The tables factor in not only the effects linked directly to the driver, but also those linked to the (driven) vehicle and the (driving) environment. They show, at a glance, to concerned researchers, equipment providers, and vehicle manufacturers (1) most of the options they have to implement various forms of advanced DM systems, and (2) fruitful areas for further research and innovation.
Leveraging biased click data for optimizing learning to rank systems has been a popular approach in information retrieval. Because click data is often noisy and biased, a variety of methods have been proposed to construct unbiased learning to rank (ULTR) algorithms for the learning of unbiased ranking models. Among them, automatic unbiased learning to rank (AutoULTR) algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their differences in theories and algorithm design, existing studies on ULTR usually use uni-variate ranking functions to score each document or result independently. On the other hand, recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels. Whether such superior performance would hold in ULTR with noisy data, however, is mostly unknown. In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework. Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform those with uni-variate scoring functions and permutation-variant multivariate scoring functions.
This paper seeks to develop a deeper understanding of the fundamental properties of neural text generations models. The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area. Previously, the extent and degree to which these artifacts surface in generated text has not been well studied. In the spirit of better understanding generative text models and their artifacts, we propose the new task of distinguishing which of several variants of a given model generated a piece of text, and we conduct an extensive suite of diagnostic tests to observe whether modeling choices (e.g., sampling methods, top-$k$ probabilities, model architectures, etc.) leave detectable artifacts in the text they generate. Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone. This suggests that neural text generators may be more sensitive to various modeling choices than previously thought.
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.
We introduce DAiSEE, the largest multi-label video classification dataset comprising of over two-and-a-half million video frames (2,723,882), 9068 video snippets (about 25 hours of recording) captured from 112 users for recognizing user affective states, including engagement, in the wild. In addition to engagement, it also includes associated affective states of boredom, confusion, and frustration, which are relevant to such applications. The dataset has four levels of labels from very low to very high for each of the affective states, collected using crowd annotators and correlated with a gold standard annotation obtained from a team of expert psychologists. We have also included benchmark results on this dataset using state-of-the-art video classification methods that are available today, and the baselines on each of the labels is included with this dataset. To the best of our knowledge, DAiSEE is the first and largest such dataset in this domain. We believe that DAiSEE will provide the research community with challenges in feature extraction, context-based inference, and development of suitable machine learning methods for related tasks, thus providing a springboard for further research.