亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the spectral properties of the sample canonical correlation (SCC) matrix under the alternative hypothesis to provide a more comprehensive description of the association between two sets of variables. Our research involves establishing the relationship between the eigenvalues of the SCC matrix and the block correlation matrix, as well as proving the universality of the Stieltjes transform of the limiting spectral distribution (LSD) of the block correlation matrix. By combining the results from the normal case, we establish the limiting spectral distribution (LSD) of the SCC matrix with a general underlying distribution under the arbitrary rank alternative hypothesis. Finally, we present several simulated examples and find that they fit well with our theoretical results.

相關內容

We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.

In this paper we study dually flat spaces arising from Delzant polytopes equipped with a symplectic potential together with their corresponding toric K\"ahler manifolds as their torifications.We introduce a dually flat structure and the associated Bregman divergence on the boundary from the viewpoint of toric K\"ahler geometry. We show a continuity and a generalized Pythagorean theorem for the divergence on the boundary. We also provide a characterization for a toric K\"ahler manifold to become a torification of a mixture family on a finite set.

Due to the importance of linear algebra and matrix operations in data analytics, there is significant interest in using relational query optimization and processing techniques for evaluating (sparse) linear algebra programs. In particular, in recent years close connections have been established between linear algebra programs and relational algebra that allow transferring optimization techniques of the latter to the former. In this paper, we ask ourselves which linear algebra programs in MATLANG correspond to the free-connex and q-hierarchical fragments of conjunctive first-order logic. Both fragments have desirable query processing properties: free-connex conjunctive queries support constant-delay enumeration after a linear-time preprocessing phase, and q-hierarchical conjunctive queries further allow constant-time updates. By characterizing the corresponding fragments of MATLANG, we hence identify the fragments of linear algebra programs that one can evaluate with constant-delay enumeration after linear-time preprocessing and with constant-time updates. To derive our results, we improve and generalize previous correspondences between MATLANG and relational algebra evaluated over semiring-annotated relations. In addition, we identify properties on semirings that allow to generalize the complexity bounds for free-connex and q-hierarchical conjunctive queries from Boolean annotations to general semirings.

In this paper, we investigate the functional central limit theorem and the Marcinkiewicz strong law of large numbers for U-statistics having absolutely regular data and taking value in a separable Hilbert space. The novelty of our approach consists in using coupling in order to formulate a deviation inequality for original $U$-statistic, where the upper bound involves the mixing coefficient and the tail of several U-statistics of i.i.d. data. The presented results improve the known results in several directions: the case of metric space valued data is considered as well as Hilbert space valued, and the mixing rates are less restrictive in a wide range of parameters.

We construct a Convolution Quadrature (CQ) scheme for the quasilinear subdiffusion equation and supply it with the fast and oblivious implementation. In particular we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the Finite Element Method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. As a passing result, we also obtain a discrete Gronwall inequality for the CQ, which is a crucial ingredient of our convergence proof based on the energy method. The paper is concluded with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.

We propose three test criteria each of which is appropriate for testing, respectively, the equivalence hypotheses of symmetry, of homogeneity, and of independence, with multivariate data. All quantities have the common feature of involving weighted--type distances between characteristic functions and are convenient from the computational point of view if the weight function is properly chosen. The asymptotic behavior of the tests under the null hypothesis is investigated, and numerical studies are conducted in order to examine the performance of the criteria in finite samples.

Although the vectorization operation is known and well-defined, it is only defined for 2-D matrices, and its inverse isn't as well-popularized. This work proposes to generalize the vectorization to higher dimensions, and define mathematically its inverse operation.

We describe a novel operator-splitting approach to numerical relativistic magnetohydrodynamics designed to expand its applicability to the domain of ultra-high magnetisation. In this approach, the electromagnetic field is split into the force-free component, governed by the equations of force-free degenerate electrodynamics (FFDE), and the perturbation component, governed by the perturbation equations derived from the full system of relativistic magnetohydrodynamics (RMHD). The combined system of the FFDE and perturbation equations is integrated simultaneously, for which various numerical techniques developed for hyperbolic conservation laws can be used. At the end of every time-step of numerical integration, the force-free and the perturbation components of the electromagnetic field are recombined and the result is regarded as the initial value of the force-free component for the next time-step, whereas the initial value of the perturbation component is set to zero. To explore the potential of this approach, we build a 3rd-order WENO code, which was used to carry out 1D and 2D test simulations. Their results show that this operator-splitting approach allows us to bypass the stiffness of RMHD in the ultra-high-magnetisation regime where the perturbation component becomes very small. At the same time, the cod

In this paper, we study the stochastic convergence of regularized solutions for backward heat conduction problems. These problems are recognized as ill-posed due to the exponential decay of eigenvalues associated with the forward problems. We derive an error estimate for the least-squares regularized minimization problem within the framework of stochastic convergence. Our analysis reveals that the optimal error of the Tikhonov-type least-squares optimization problem depends on the noise level, the number of sensors, and the underlying ground truth. Moreover, we propose a self-adaptive algorithm to identify the optimal regularization parameter for the optimization problem without requiring knowledge of the noise level or any other prior information, which will be very practical in applications. We present numerical examples to demonstrate the accuracy and efficiency of our proposed method. These numerical results show that our method is efficient in solving backward heat conduction problems.

A new linear relaxation system for nonconservative hyperbolic systems is introduced, in which a nonlocal source term accounts for the nonconservative product of the original system. Using an asymptotic analysis the relaxation limit and its stability are investigated. It is shown that the path-conservative Lax-Friedrichs scheme arises from a discrete limit of an implicit-explicit scheme for the relaxation system. The relaxation approach is further employed to couple two nonconservative systems at a static interface. A coupling strategy motivated from conservative Kirchhoff conditions is introduced and a corresponding Riemann solver provided. A fully discrete scheme for coupled nonconservative products is derived and studied in terms of path-conservation. Numerical experiments applying the approach to a coupled model of vascular blood flow are presented.

北京阿比特科技有限公司