In this paper, we study the stochastic convergence of regularized solutions for backward heat conduction problems. These problems are recognized as ill-posed due to the exponential decay of eigenvalues associated with the forward problems. We derive an error estimate for the least-squares regularized minimization problem within the framework of stochastic convergence. Our analysis reveals that the optimal error of the Tikhonov-type least-squares optimization problem depends on the noise level, the number of sensors, and the underlying ground truth. Moreover, we propose a self-adaptive algorithm to identify the optimal regularization parameter for the optimization problem without requiring knowledge of the noise level or any other prior information, which will be very practical in applications. We present numerical examples to demonstrate the accuracy and efficiency of our proposed method. These numerical results show that our method is efficient in solving backward heat conduction problems.
In this paper we study dually flat spaces arising from Delzant polytopes equipped with a symplectic potential together with their corresponding toric K\"ahler manifolds as their torifications.We introduce a dually flat structure and the associated Bregman divergence on the boundary from the viewpoint of toric K\"ahler geometry. We show a continuity and a generalized Pythagorean theorem for the divergence on the boundary. We also provide a characterization for a toric K\"ahler manifold to become a torification of a mixture family on a finite set.
In this paper, for the generalized Darcy problem (an elliptic equation with discontinuous coefficients), we study a special Galerkin-Least-Squares method, known as the augmented mixed finite element method, and its relationship to the standard least-squares finite element method (LSFEM). Two versions of augmented mixed finite element methods are proposed in the paper with robust a priori and a posteriori error estimates. As partial least-squares methods, the augmented mixed finite element methods are more flexible than the original least-squares finite element methods. The a posteriori error estimators of the augmented mixed finite element methods are the evaluations of the numerical solutions at the corresponding least-squares functionals. As comparisons, we discuss the non-robustness of the closely related least-squares finite element methods. Numerical experiments are presented to verify our findings.
We develop a theory for the representation of opaque solids as volumetric models. Starting from a stochastic representation of opaque solids as random indicator functions, we prove the conditions under which such solids can be modeled using exponential volumetric transport. We also derive expressions for the volumetric attenuation coefficient as a functional of the probability distributions of the underlying indicator functions. We generalize our theory to account for isotropic and anisotropic scattering at different parts of the solid, and for representations of opaque solids as implicit surfaces. We derive our volumetric representation from first principles, which ensures that it satisfies physical constraints such as reciprocity and reversibility. We use our theory to explain, compare, and correct previous volumetric representations, as well as propose meaningful extensions that lead to improved performance in 3D reconstruction tasks.
In this paper, we present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk on Spheres algorithm. The method combines a traditional Walk on Spheres algorithm with use of reflections at the Neumann boundaries. We apply our algorithm to simulate numerical conformal mappings from certain quadrilaterals to the corresponding canonical domains, and to compute their conformal moduli. Finally, we give examples of the method on three dimensional polyhedral domains, and use it to simulate the heat flow on an L-shaped insulated polyhedron.
We present here a large collection of harmonic and quadratic harmonic sums, that can be useful in applied questions, e.g., probabilistic ones. We find closed-form formulae, that we were not able to locate in the literature.
Contrastive representation learning has emerged as an outstanding approach for anomaly detection. In this work, we explore the $\ell_2$-norm of contrastive features and its applications in out-of-distribution detection. We propose a simple method based on contrastive learning, which incorporates out-of-distribution data by discriminating against normal samples in the contrastive layer space. Our approach can be applied flexibly as an outlier exposure (OE) approach, where the out-of-distribution data is a huge collective of random images, or as a fully self-supervised learning approach, where the out-of-distribution data is self-generated by applying distribution-shifting transformations. The ability to incorporate additional out-of-distribution samples enables a feasible solution for datasets where AD methods based on contrastive learning generally underperform, such as aerial images or microscopy images. Furthermore, the high-quality features learned through contrastive learning consistently enhance performance in OE scenarios, even when the available out-of-distribution dataset is not diverse enough. Our extensive experiments demonstrate the superiority of our proposed method under various scenarios, including unimodal and multimodal settings, with various image datasets.
In this work, we present the physics-informed neural network (PINN) model applied particularly to dynamic problems in solid mechanics. We focus on forward and inverse problems. Particularly, we show how a PINN model can be used efficiently for material identification in a dynamic setting. In this work, we assume linear continuum elasticity. We show results for two-dimensional (2D) plane strain problem and then we proceed to apply the same techniques for a three-dimensional (3D) problem. As for the training data we use the solution based on the finite element method. We rigorously show that PINN models are accurate, robust and computationally efficient, especially as a surrogate model for material identification problems. Also, we employ state-of-the-art techniques from the PINN literature which are an improvement to the vanilla implementation of PINN. Based on our results, we believe that the framework we have developed can be readily adapted to computational platforms for solving multiple dynamic problems in solid mechanics.
Quantum Extreme Learning Machines (QELMs) have emerged as a promising framework for quantum machine learning. Their appeal lies in the rich feature map induced by the dynamics of a quantum substrate - the quantum reservoir - and the efficient post-measurement training via linear regression. Here we study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series. We show that the achievable Fourier frequencies are determined by the data encoding scheme, while Fourier coefficients depend on both the reservoir and the measurement. Notably, the expressivity of QELMs is fundamentally limited by the number of Fourier frequencies and the number of observables, while the complexity of the prediction hinges on the reservoir. As a cautionary note on scalability, we identify four sources that can lead to the exponential concentration of the observables as the system size grows (randomness, hardware noise, entanglement, and global measurements) and show how this can turn QELMs into useless input-agnostic oracles. Our analysis elucidates the potential and fundamental limitations of QELMs, and lays the groundwork for systematically exploring quantum reservoir systems for other machine learning tasks.
In this paper, we study the stability and convergence of a fully discrete finite difference scheme for the initial value problem associated with the Korteweg-De Vries (KdV) equation. We employ the Crank-Nicolson method for temporal discretization and establish that the scheme is $L^2$-conservative. The convergence analysis reveals that utilizing inherent Kato's local smoothing effect, the proposed scheme converges to a classical solution for sufficiently regular initial data $u_0 \in H^{3}(\mathbb{R})$ and to a weak solution in $L^2(0,T;L^2_{\text{loc}}(\mathbb{R}))$ for non-smooth initial data $u_0 \in L^2(\mathbb{R})$. Optimal convergence rates in both time and space for the devised scheme are derived. The theoretical results are justified through several numerical illustrations.
High-order tensor methods for solving both convex and nonconvex optimization problems have generated significant research interest, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of regularization. Developing efficient techniques for solving such subproblems is an ongoing topic of research, and this paper addresses the case of the third-order tensor subproblem. We propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with Quartic Regularisation, by minimizing a sequence of local quadratic models that incorporate simple cubic and quartic terms. The role of the cubic term is to crudely approximate local tensor information, while the quartic one controls model regularization and progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $\mathcal{O}(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases. We propose practical CQR variants that use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.