亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Contrastive representation learning has emerged as an outstanding approach for anomaly detection. In this work, we explore the $\ell_2$-norm of contrastive features and its applications in out-of-distribution detection. We propose a simple method based on contrastive learning, which incorporates out-of-distribution data by discriminating against normal samples in the contrastive layer space. Our approach can be applied flexibly as an outlier exposure (OE) approach, where the out-of-distribution data is a huge collective of random images, or as a fully self-supervised learning approach, where the out-of-distribution data is self-generated by applying distribution-shifting transformations. The ability to incorporate additional out-of-distribution samples enables a feasible solution for datasets where AD methods based on contrastive learning generally underperform, such as aerial images or microscopy images. Furthermore, the high-quality features learned through contrastive learning consistently enhance performance in OE scenarios, even when the available out-of-distribution dataset is not diverse enough. Our extensive experiments demonstrate the superiority of our proposed method under various scenarios, including unimodal and multimodal settings, with various image datasets.

相關內容

What is the best paradigm to recognize objects -- discriminative inference (fast but potentially prone to shortcut learning) or using a generative model (slow but potentially more robust)? We build on recent advances in generative modeling that turn text-to-image models into classifiers. This allows us to study their behavior and to compare them against discriminative models and human psychophysical data. We report four intriguing emergent properties of generative classifiers: they show a record-breaking human-like shape bias (99% for Imagen), near human-level out-of-distribution accuracy, state-of-the-art alignment with human classification errors, and they understand certain perceptual illusions. Our results indicate that while the current dominant paradigm for modeling human object recognition is discriminative inference, zero-shot generative models approximate human object recognition data surprisingly well.

In this paper, we propose to consider various models of pattern recognition. At the same time, it is proposed to consider models in the form of two operators: a recognizing operator and a decision rule. Algebraic operations are introduced on recognizing operators, and based on the application of these operators, a family of recognizing algorithms is created. An upper estimate is constructed for the model, which guarantees the completeness of the extension.

In many practical studies, learning directionality between a pair of variables is of great interest while notoriously hard when their underlying relation is nonlinear. This paper presents a method that examines asymmetry in exposure-outcome pairs when a priori assumptions about their relative ordering are unavailable. Our approach utilizes a framework of generative exposure mapping (GEM) to study asymmetric relations in continuous exposure-outcome pairs, through which we can capture distributional asymmetries with no prefixed variable ordering. We propose a coefficient of asymmetry to quantify relational asymmetry using Shannon's entropy analytics as well as statistical estimation and inference for such an estimand of directionality. Large-sample theoretical guarantees are established for cross-fitting inference techniques. The proposed methodology is extended to allow both measured confounders and contamination in outcome measurements, which is extensively evaluated through extensive simulation studies and real data applications.

Quantum machine learning models have shown successful generalization performance even when trained with few data. In this work, through systematic randomization experiments, we show that traditional approaches to understanding generalization fail to explain the behavior of such quantum models. Our experiments reveal that state-of-the-art quantum neural networks accurately fit random states and random labeling of training data. This ability to memorize random data defies current notions of small generalization error, problematizing approaches that build on complexity measures such as the VC dimension, the Rademacher complexity, and all their uniform relatives. We complement our empirical results with a theoretical construction showing that quantum neural networks can fit arbitrary labels to quantum states, hinting at their memorization ability. Our results do not preclude the possibility of good generalization with few training data but rather rule out any possible guarantees based only on the properties of the model family. These findings expose a fundamental challenge in the conventional understanding of generalization in quantum machine learning and highlight the need for a paradigm shift in the study of quantum models for machine learning tasks.

Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: //github.com/optray/PIANO.

While branching network structures abound in nature, their objective analysis is more difficult than expected because existing quantitative methods often rely on the subjective judgment of branch structures. This problem is particularly pronounced when dealing with images comprising discrete particles. Here we propose an objective framework for quantitative analysis of branching networks by introducing the mathematical definitions for internal and external structures based on topological data analysis, specifically, persistent homology. We compare persistence diagrams constructed from images with and without plots on the convex hull. The unchanged points in the two diagrams are the internal structures and the difference between the two diagrams is the external structures. We construct a mathematical theory for our method and show that the internal structures have a monotonicity relationship with respect to the plots on the convex hull, while the external structures do not. This is the phenomenon related to the resolution of the image. Our method can be applied to a wide range of branch structures in biology, enabling objective analysis of numbers, spatial distributions, sizes, and more. Additionally, our method has the potential to be combined with other tools in topological data analysis, such as the generalized persistence landscape.

In 2012 Chen and Singer introduced the notion of discrete residues for rational functions as a complete obstruction to rational summability. More explicitly, for a given rational function f(x), there exists a rational function g(x) such that f(x) = g(x+1) - g(x) if and only if every discrete residue of f(x) is zero. Discrete residues have many important further applications beyond summability: to creative telescoping problems, thence to the determination of (differential-)algebraic relations among hypergeometric sequences, and subsequently to the computation of (differential) Galois groups of difference equations. However, the discrete residues of a rational function are defined in terms of its complete partial fraction decomposition, which makes their direct computation impractical due to the high complexity of completely factoring arbitrary denominator polynomials into linear factors. We develop a factorization-free algorithm to compute discrete residues of rational functions, relying only on gcd computations and linear algebra.

In this study, we explore data assimilation for the Stochastic Camassa-Holm equation through the application of the particle filtering framework. Specifically, our approach integrates adaptive tempering, jittering, and nudging techniques to construct an advanced particle filtering system. All filtering processes are executed utilizing ensemble parallelism. We conduct extensive numerical experiments across various scenarios of the Stochastic Camassa-Holm model with transport noise and viscosity to examine the impact of different filtering procedures on the performance of the data assimilation process. Our analysis focuses on how observational data and the data assimilation step influence the accuracy and uncertainty of the obtained results.

We introduce a novel continual learning method based on multifidelity deep neural networks. This method learns the correlation between the output of previously trained models and the desired output of the model on the current training dataset, limiting catastrophic forgetting. On its own the multifidelity continual learning method shows robust results that limit forgetting across several datasets. Additionally, we show that the multifidelity method can be combined with existing continual learning methods, including replay and memory aware synapses, to further limit catastrophic forgetting. The proposed continual learning method is especially suited for physical problems where the data satisfy the same physical laws on each domain, or for physics-informed neural networks, because in these cases we expect there to be a strong correlation between the output of the previous model and the model on the current training domain.

Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.

北京阿比特科技有限公司