What is the best paradigm to recognize objects -- discriminative inference (fast but potentially prone to shortcut learning) or using a generative model (slow but potentially more robust)? We build on recent advances in generative modeling that turn text-to-image models into classifiers. This allows us to study their behavior and to compare them against discriminative models and human psychophysical data. We report four intriguing emergent properties of generative classifiers: they show a record-breaking human-like shape bias (99% for Imagen), near human-level out-of-distribution accuracy, state-of-the-art alignment with human classification errors, and they understand certain perceptual illusions. Our results indicate that while the current dominant paradigm for modeling human object recognition is discriminative inference, zero-shot generative models approximate human object recognition data surprisingly well.
In recent years, machine learning models have achieved success based on the independently and identically distributed assumption. However, this assumption can be easily violated in real-world applications, leading to the Out-of-Distribution (OOD) problem. Understanding how modern over-parameterized DNNs behave under non-trivial natural distributional shifts is essential, as current theoretical understanding is insufficient. Existing theoretical works often provide meaningless results for over-parameterized models in OOD scenarios or even contradict empirical findings. To this end, we are investigating the performance of the over-parameterized model in terms of OOD generalization under the general benign overfitting conditions. Our analysis focuses on a random feature model and examines non-trivial natural distributional shifts, where the benign overfitting estimators demonstrate a constant excess OOD loss, despite achieving zero excess in-distribution (ID) loss. We demonstrate that in this scenario, further increasing the model's parameterization can significantly reduce the OOD loss. Intuitively, the variance term of ID loss remains low due to orthogonality of long-tail features, meaning overfitting noise during training generally doesn't raise testing loss. However, in OOD cases, distributional shift increases the variance term. Thankfully, the inherent shift is unrelated to individual x, maintaining the orthogonality of long-tail features. Expanding the hidden dimension can additionally improve this orthogonality by mapping the features into higher-dimensional spaces, thereby reducing the variance term. We further show that model ensembles also improve OOD loss, akin to increasing model capacity. These insights explain the empirical phenomenon of enhanced OOD generalization through model ensembles, supported by consistent simulations with theoretical results.
Experiments studying get-out-the-vote (GOTV) efforts estimate the causal effect of various mobilization efforts on voter turnout. However, there is often substantial noncompliance in these studies. A usual approach is to use an instrumental variable (IV) analysis to estimate impacts for compliers, here being those actually contacted by the investigators. Unfortunately, popular IV estimators can be unstable in studies with a small fraction of compliers. We explore post-stratifying the data (e.g., taking a weighted average of IV estimates within each stratum) using variables that predict complier status (and, potentially, the outcome) to mitigate this. We present the benefits of post-stratification in terms of bias, variance, and improved standard error estimates, and provide a finite-sample asymptotic variance formula. We also compare the performance of different IV approaches and discuss the advantages of our design-based post-stratification approach over incorporating compliance-predictive covariates into the two-stage least squares estimator. In the end, we show that covariates predictive of compliance can increase precision, but only if one is willing to make a bias-variance trade-off by down-weighting or dropping strata with few compliers. By contrast, standard approaches such as two-stage least squares fail to use such information. We finally examine the benefits of our approach in two GOTV applications.
We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.
Pre-training strategies based on self-supervised learning (SSL) have proven to be effective pretext tasks for many downstream tasks in computer vision. Due to the significant disparity between medical and natural images, the application of typical SSL is not straightforward in medical imaging. Additionally, those pretext tasks often lack context, which is critical for computer-aided clinical decision support. In this paper, we developed a longitudinal masked auto-encoder (MAE) based on the well-known Transformer-based MAE. In particular, we explored the importance of time-aware position embedding as well as disease progression-aware masking. Taking into account the time between examinations instead of just scheduling them offers the benefit of capturing temporal changes and trends. The masking strategy, for its part, evolves during follow-up to better capture pathological changes, ensuring a more accurate assessment of disease progression. Using OPHDIAT, a large follow-up screening dataset targeting diabetic retinopathy (DR), we evaluated the pre-trained weights on a longitudinal task, which is to predict the severity label of the next visit within 3 years based on the past time series examinations. Our results demonstrated the relevancy of both time-aware position embedding and masking strategies based on disease progression knowledge. Compared to popular baseline models and standard longitudinal Transformers, these simple yet effective extensions significantly enhance the predictive ability of deep classification models.
Large language model (LLM) has marked a pivotal moment in the field of machine learning and deep learning. Recently its capability for query planning has been investigated, including both single-modal and multi-modal queries. However, there is no work on the query optimization capability of LLM. As a critical (or could even be the most important) step that significantly impacts the execution performance of the query plan, such analysis and attempts should not be missed. From another aspect, existing query optimizers are usually rule-based or rule-based + cost-based, i.e., they are dependent on manually created rules to complete the query plan rewrite/transformation. Given the fact that modern optimizers include hundreds to thousands of rules, designing a multi-modal query optimizer following a similar way is significantly time-consuming since we will have to enumerate as many multi-modal optimization rules as possible, which has not been well addressed today. In this paper, we investigate the query optimization ability of LLM and use LLM to design LaPuda, a novel LLM and Policy based multi-modal query optimizer. Instead of enumerating specific and detailed rules, LaPuda only needs a few abstract policies to guide LLM in the optimization, by which much time and human effort are saved. Furthermore, to prevent LLM from making mistakes or negative optimization, we borrow the idea of gradient descent and propose a guided cost descent (GCD) algorithm to perform the optimization, such that the optimization can be kept in the correct direction. In our evaluation, our methods consistently outperform the baselines in most cases. For example, the optimized plans generated by our methods result in 1~3x higher execution speed than those by the baselines.
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.
The univariate dimension reduction (UDR) method stands as a way to estimate the statistical moments of the output that is effective in a large class of uncertainty quantification (UQ) problems. UDR's fundamental strategy is to approximate the original function using univariate functions so that the UQ cost only scales linearly with the dimension of the problem. Nonetheless, UDR's effectiveness can diminish when uncertain inputs have high variance, particularly when assessing the output's second and higher-order statistical moments. This paper proposes a new method, gradient-enhanced univariate dimension reduction (GUDR), that enhances the accuracy of UDR by incorporating univariate gradient function terms into the UDR approximation function. Theoretical results indicate that the GUDR approximation is expected to be one order more accurate than UDR in approximating the original function, and it is expected to generate more accurate results in computing the output's second and higher-order statistical moments. Our proposed method uses a computational graph transformation strategy to efficiently evaluate the GUDR approximation function on tensor-grid quadrature inputs, and use the tensor-grid input-output data to compute the statistical moments of the output. With an efficient automatic differentiation method to compute the gradients, our method preserves UDR's linear scaling of computation time with problem dimension. Numerical results show that the GUDR is more accurate than UDR in estimating the standard deviation of the output and has a performance comparable to the method of moments using a third-order Taylor series expansion.
Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.
Due to their flexibility to represent almost any kind of relational data, graph-based models have enjoyed a tremendous success over the past decades. While graphs are inherently only combinatorial objects, however, many prominent analysis tools are based on the algebraic representation of graphs via matrices such as the graph Laplacian, or on associated graph embeddings. Such embeddings associate to each node a set of coordinates in a vector space, a representation which can then be employed for learning tasks such as the classification or alignment of the nodes of the graph. As the geometric picture provided by embedding methods enables the use of a multitude of methods developed for vector space data, embeddings have thus gained interest both from a theoretical as well as a practical perspective. Inspired by trace-optimization problems, often encountered in the analysis of graph-based data, here we present a method to derive ellipsoidal embeddings of the nodes of a graph, in which each node is assigned a set of coordinates on the surface of a hyperellipsoid. Our method may be seen as an alternative to popular spectral embedding techniques, to which it shares certain similarities we discuss. To illustrate the utility of the embedding we conduct a case study in which analyse synthetic and real world networks with modular structure, and compare the results obtained with known methods in the literature.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.