亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose to consider various models of pattern recognition. At the same time, it is proposed to consider models in the form of two operators: a recognizing operator and a decision rule. Algebraic operations are introduced on recognizing operators, and based on the application of these operators, a family of recognizing algorithms is created. An upper estimate is constructed for the model, which guarantees the completeness of the extension.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 相似度 · 專利 · MoDELS · 詞向量表示 ·
2024 年 3 月 25 日

This paper makes two contributions to the field of text-based patent similarity. First, it compares the performance of different kinds of patent-specific pretrained embedding models, namely static word embeddings (such as word2vec and doc2vec models) and contextual word embeddings (such as transformers based models), on the task of patent similarity calculation. Second, it compares specifically the performance of Sentence Transformers (SBERT) architectures with different training phases on the patent similarity task. To assess the models' performance, we use information about patent interferences, a phenomenon in which two or more patent claims belonging to different patent applications are proven to be overlapping by patent examiners. Therefore, we use these interferences cases as a proxy for maximum similarity between two patents, treating them as ground-truth to evaluate the performance of the different embedding models. Our results point out that, first, Patent SBERT-adapt-ub, the domain adaptation of the pretrained Sentence Transformer architecture proposed in this research, outperforms the current state-of-the-art in patent similarity. Second, they show that, in some cases, large static models performances are still comparable to contextual ones when trained on extensive data; thus, we believe that the superiority in the performance of contextual embeddings may not be related to the actual architecture but rather to the way the training phase is performed.

In this work we present denoiSplit, a method to tackle a new analysis task, i.e. the challenge of joint semantic image splitting and unsupervised denoising. This dual approach has important applications in fluorescence microscopy, where semantic image splitting has important applications but noise does generally hinder the downstream analysis of image content. Image splitting involves dissecting an image into its distinguishable semantic structures. We show that the current state-of-the-art method for this task struggles in the presence of image noise, inadvertently also distributing the noise across the predicted outputs. The method we present here can deal with image noise by integrating an unsupervised denoising sub-task. This integration results in improved semantic image unmixing, even in the presence of notable and realistic levels of imaging noise. A key innovation in denoiSplit is the use of specifically formulated noise models and the suitable adjustment of KL-divergence loss for the high-dimensional hierarchical latent space we are training. We showcase the performance of denoiSplit across 4 tasks on real-world microscopy images. Additionally, we perform qualitative and quantitative evaluations and compare results to existing benchmarks, demonstrating the effectiveness of using denoiSplit: a single Variational Splitting Encoder-Decoder (VSE) Network using two suitable noise models to jointly perform semantic splitting and denoising.

This paper studies optimal hypothesis testing for nonregular statistical models with parameter-dependent support. We consider both one-sided and two-sided hypothesis testing and develop asymptotically uniformly most powerful tests based on the likelihood ratio process. The proposed one-sided test involves randomization to achieve asymptotic size control, some tuning constant to avoid discontinuities in the limiting likelihood ratio process, and a user-specified alternative hypothetical value to achieve the asymptotic optimality. Our two-sided test becomes asymptotically uniformly most powerful without imposing further restrictions such as unbiasedness. Simulation results illustrate desirable power properties of the proposed tests.

We propose to improve the convergence properties of the single-reference coupled cluster (CC) method through an augmented Lagrangian formalism. The conventional CC method changes a linear high-dimensional eigenvalue problem with exponential size into a problem of determining the roots of a nonlinear system of equations that has a manageable size. However, current numerical procedures for solving this system of equations to get the lowest eigenvalue suffer from two practical issues: First, solving the CC equations may not converge, and second, when converging, they may converge to other -- potentially unphysical -- states, which are stationary points of the CC energy expression. We show that both issues can be dealt with when a suitably defined energy is minimized in addition to solving the original CC equations. We further propose an augmented Lagrangian method for coupled cluster (alm-CC) to solve the resulting constrained optimization problem. We numerically investigate the proposed augmented Lagrangian formulation showing that the convergence towards the ground state is significantly more stable and that the optimization procedure is less susceptible to local minima. Furthermore, the computational cost of alm-CC is comparable to the conventional CC method.

We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

In this paper, we propose a novel algorithm called Neuron-wise Parallel Subspace Correction Method (NPSC) for the finite neuron method that approximates numerical solutions of partial differential equations (PDEs) using neural network functions. Despite extremely extensive research activities in applying neural networks for numerical PDEs, there is still a serious lack of effective training algorithms that can achieve adequate accuracy, even for one-dimensional problems. Based on recent results on the spectral properties of linear layers and landscape analysis for single neuron problems, we develop a special type of subspace correction method that optimizes the linear layer and each neuron in the nonlinear layer separately. An optimal preconditioner that resolves the ill-conditioning of the linear layer is presented for one-dimensional problems, so that the linear layer is trained in a uniform number of iterations with respect to the number of neurons. In each single neuron problem, a good local minimum that avoids flat energy regions is found by a superlinearly convergent algorithm. Numerical experiments on function approximation problems and PDEs demonstrate better performance of the proposed method than other gradient-based methods.

In this paper, we derive high-dimensional asymptotic properties of the Moore-Penrose inverse and the ridge-type inverse of the sample covariance matrix. In particular, the analytical expressions of the weighted sample trace moments are deduced for both generalized inverse matrices and are present by using the partial exponential Bell polynomials which can easily be computed in practice. The existent results are extended in several directions: (i) First, the population covariance matrix is not assumed to be a multiple of the identity matrix; (ii) Second, the assumption of normality is not used in the derivation; (iii) Third, the asymptotic results are derived under the high-dimensional asymptotic regime. Our findings are used to construct improved shrinkage estimators of the precision matrix, which asymptotically minimize the quadratic loss with probability one. Finally, the finite sample properties of the derived theoretical results are investigated via an extensive simulation study.

This paper considers computational methods that split a vector field into three components in the case when both the vector field and the split components might be unbounded. We first employ classical Taylor expansion which, after some algebra, results in an expression for a second-order splitting which, strictly speaking, makes sense only for bounded operators. Next, using an alternative approach, we derive an error expression and an error bound in the same setting which are however valid in the presence of unbounded operators. While the paper itself is concerned with second-order splittings using three components, the method of proof in the presence of unboundedness remains valid (although significantly more complicated) in a more general scenario, which will be the subject of a forthcoming paper.

We consider the problem of estimating log-determinants of large, sparse, positive definite matrices. A key focus of our algorithm is to reduce computational cost, and it is based on sparse approximate inverses. The algorithm can be implemented to be adaptive, and it uses graph spline approximation to improve accuracy. We illustrate our approach on classes of large sparse matrices.

In this work, we present an efficient approach to solve nonlinear high-contrast multiscale diffusion problems. We incorporate the explicit-implicit-null (EIN) method to separate the nonlinear term into a linear term and a damping term, and then utilise the implicit and explicit time marching scheme for the two parts respectively. Due to the multiscale property of the linear part, we further introduce a temporal partially explicit splitting scheme and construct suitable multiscale subspaces to speed up the computation. The approximated solution is splitted into these subspaces associated with different physics. The temporal splitting scheme employs implicit discretization in the subspace with small dimension that representing the high-contrast property and uses explicit discretization for the other subspace. We exploit the stability of the proposed scheme and give the condition for the choice of the linear diffusion coefficient. The convergence of the proposed method is provided. Several numerical tests are performed to show the efficiency and accuracy of the proposed approach.

北京阿比特科技有限公司