亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although numerous recent studies have suggested new frameworks for zero-shot TTS using large-scale, real-world data, studies that focus on the intelligibility of zero-shot TTS are relatively scarce. Zero-shot TTS demands additional efforts to ensure clear pronunciation and speech quality due to its inherent requirement of replacing a core parameter (speaker embedding or acoustic prompt) with a new one at the inference stage. In this study, we propose a zero-shot TTS model focused on intelligibility, which we refer to as Intelli-Z. Intelli-Z learns speaker embeddings by using multi-speaker TTS as its teacher and is trained with a cycle-consistency loss to include mismatched text-speech pairs for training. Additionally, it selectively aggregates speaker embeddings along the temporal dimension to minimize the interference of the text content of reference speech at the inference stage. We substantiate the effectiveness of the proposed methods with an ablation study. The Mean Opinion Score (MOS) increases by 9% for unseen speakers when the first two methods are ap- plied, and it further improves by 16% when selective temporal aggregation is applied.

相關內容

語音合成(Speech Synthesis),也稱為文語轉換(Text-to-Speech, TTS,它是將任意的輸入文本轉換成自然流暢的語音輸出。語音合成涉及到人工智能、心理學、聲學、語言學、數字信號處理、計算機科學等多個學科技術,是信息處理領域中的一項前沿技術。 隨著計算機技術的不斷提高,語音合成技術從早期的共振峰合成,逐步發展為波形拼接合成和統計參數語音合成,再發展到混合語音合成;合成語音的質量、自然度已經得到明顯提高,基本能滿足一些特定場合的應用需求。目前,語音合成技術在銀行、醫院等的信息播報系統、汽車導航系統、自動應答呼叫中心等都有廣泛應用,取得了巨大的經濟效益。 另外,隨著智能手機、MP3、PDA 等與我們生活密切相關的媒介的大量涌現,語音合成的應用也在逐漸向娛樂、語音教學、康復治療等領域深入。可以說語音合成正在影響著人們生活的方方面面。

Hardware development relies on simulations, particularly cycle-accurate RTL (Register Transfer Level) simulations, which consume significant time. As single-processor performance grows only slowly, conventional, single-threaded RTL simulation is becoming less practical for increasingly complex chips and systems. A solution is parallel RTL simulation, where ideally, simulators could run on thousands of parallel cores. However, existing simulators can only exploit tens of cores. This paper studies the challenges inherent in running parallel RTL simulation on a multi-thousand-core machine (the Graphcore IPU, a 1472-core machine). Simulation performance requires balancing three factors: synchronization, communication, and computation. We experimentally evaluate each metric and analyze how it affects parallel simulation speed, drawing on contrasts between the large-scale IPU and smaller but faster x86 systems. Using this analysis, we build Parendi, an RTL simulator for the IPU. It distributes RTL simulation across 5888 cores on 4 IPU sockets. Parendi runs large RTL designs up to 4x faster than a powerful, state-of-the-art x86 multicore system.

Web tables contain a large amount of valuable knowledge and have inspired tabular language models aimed at tackling table interpretation (TI) tasks. In this paper, we analyse a widely used benchmark dataset for evaluation of TI tasks, particularly focusing on the entity linking task. Our analysis reveals that this dataset is overly simplified, potentially reducing its effectiveness for thorough evaluation and failing to accurately represent tables as they appear in the real-world. To overcome this drawback, we construct and annotate a new more challenging dataset. In addition to introducing the new dataset, we also introduce a novel problem aimed at addressing the entity linking task: named entity recognition within cells. Finally, we propose a prompting framework for evaluating the newly developed large language models (LLMs) on this novel TI task. We conduct experiments on prompting LLMs under various settings, where we use both random and similarity-based selection to choose the examples presented to the models. Our ablation study helps us gain insights into the impact of the few-shot examples. Additionally, we perform qualitative analysis to gain insights into the challenges encountered by the models and to understand the limitations of the proposed dataset.

This paper presents a CLIP-based unsupervised learning method for annotation-free multi-label image classification, including three stages: initialization, training, and inference. At the initialization stage, we take full advantage of the powerful CLIP model and propose a novel approach to extend CLIP for multi-label predictions based on global-local image-text similarity aggregation. To be more specific, we split each image into snippets and leverage CLIP to generate the similarity vector for the whole image (global) as well as each snippet (local). Then a similarity aggregator is introduced to leverage the global and local similarity vectors. Using the aggregated similarity scores as the initial pseudo labels at the training stage, we propose an optimization framework to train the parameters of the classification network and refine pseudo labels for unobserved labels. During inference, only the classification network is used to predict the labels of the input image. Extensive experiments show that our method outperforms state-of-the-art unsupervised methods on MS-COCO, PASCAL VOC 2007, PASCAL VOC 2012, and NUS datasets and even achieves comparable results to weakly supervised classification methods.

Model inversion attacks (MIAs) aim to recover private data from inaccessible training sets of deep learning models, posing a privacy threat. MIAs primarily focus on the white-box scenario where attackers have full access to the model's structure and parameters. However, practical applications are usually in black-box scenarios or label-only scenarios, i.e., the attackers can only obtain the output confidence vectors or labels by accessing the model. Therefore, the attack models in existing MIAs are difficult to effectively train with the knowledge of the target model, resulting in sub-optimal attacks. To the best of our knowledge, we pioneer the research of a powerful and practical attack model in the label-only scenario. In this paper, we develop a novel MIA method, leveraging a conditional diffusion model (CDM) to recover representative samples under the target label from the training set. Two techniques are introduced: selecting an auxiliary dataset relevant to the target model task and using predicted labels as conditions to guide training CDM; and inputting target label, pre-defined guidance strength, and random noise into the trained attack model to generate and correct multiple results for final selection. This method is evaluated using Learned Perceptual Image Patch Similarity as a new metric and as a judgment basis for deciding the values of hyper-parameters. Experimental results show that this method can generate similar and accurate samples to the target label, outperforming generators of previous approaches.

A good representation of a large, complex mobile robot workspace must be space-efficient yet capable of encoding relevant geometric details. When exploring unknown environments, it needs to be updatable incrementally in an online fashion. We introduce HIO-SDF, a new method that represents the environment as a Signed Distance Field (SDF). State of the art representations of SDFs are based on either neural networks or voxel grids. Neural networks are capable of representing the SDF continuously. However, they are hard to update incrementally as neural networks tend to forget previously observed parts of the environment unless an extensive sensor history is stored for training. Voxel-based representations do not have this problem but they are not space-efficient especially in large environments with fine details. HIO-SDF combines the advantages of these representations using a hierarchical approach which employs a coarse voxel grid that captures the observed parts of the environment together with high-resolution local information to train a neural network. HIO-SDF achieves a 46% lower mean global SDF error across all test scenes than a state of the art continuous representation, and a 30% lower error than a discrete representation at the same resolution as our coarse global SDF grid. Videos and code are available at: //samsunglabs.github.io/HIO-SDF-project-page/

Despite the impressive capabilities of large language models (LLMs) across diverse applications, they still suffer from trustworthiness issues, such as hallucinations and misalignments. Retrieval-augmented language models (RAG) have been proposed to enhance the credibility of generations by grounding external knowledge, but the theoretical understandings of their generation risks remains unexplored. In this paper, we answer: 1) whether RAG can indeed lead to low generation risks, 2) how to provide provable guarantees on the generation risks of RAG and vanilla LLMs, and 3) what sufficient conditions enable RAG models to reduce generation risks. We propose C-RAG, the first framework to certify generation risks for RAG models. Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks, which we refer to as conformal generation risk. We also provide theoretical guarantees on conformal generation risks for general bounded risk functions under test distribution shifts. We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial. Our intensive empirical results demonstrate the soundness and tightness of our conformal generation risk guarantees across four widely-used NLP datasets on four state-of-the-art retrieval models.

The growing system complexity from microservice architectures and the bilateral enhancement of artificial intelligence (AI) for both attackers and defenders presents increasing security challenges for cloud-native operations. In particular, cloud-native operators require a holistic view of the dynamic security posture for the cloud-native environment from a defense aspect. Additionally, both attackers and defenders can adopt advanced AI technologies. This makes the dynamic interaction and benchmark among different intelligent offense and defense strategies more crucial. Hence, following the multi-agent deep reinforcement learning (RL) paradigm, this research develops an agent-based intelligent security service framework (ISSF) for cloud-native operation. It includes a dynamic access graph model to represent the cloud-native environment and an action model to represent offense and defense actions. Then we develop an approach to enable the training, publishing, and evaluating of intelligent security services using diverse deep RL algorithms and training strategies, facilitating their systematic development and benchmark. The experiments demonstrate that our framework can sufficiently model the security posture of a cloud-native system for defenders, effectively develop and quantitatively benchmark different services for both attackers and defenders and guide further service optimization.

Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司