The problem of answering logical queries over incomplete knowledge graphs is receiving significant attention in the machine learning community. Neuro-symbolic models are a promising recent approach, showing good performance and allowing for good interpretability properties. These models rely on trained architectures to execute atomic queries, combining them with modules that simulate the symbolic operators in queries. Unfortunately, most neuro-symbolic query processors are limited to the so-called tree-like logical queries that admit a bottom-up execution, where the leaves are constant values or anchors, and the root is the target variable. Tree-like queries, while expressive, fail short to express properties in knowledge graphs that are important in practice, such as the existence of multiple edges between entities or the presence of triangles. We propose a framework for answering arbitrary conjunctive queries over incomplete knowledge graphs. The main idea of our method is to approximate a cyclic query by an infinite family of tree-like queries, and then leverage existing models for the latter. Our approximations achieve strong guarantees: they are complete, i.e. there are no false negatives, and optimal, i.e. they provide the best possible approximation using tree-like queries. Our method requires the approximations to be tree-like queries where the leaves are anchors or existentially quantified variables. Hence, we also show how some of the existing neuro-symbolic models can handle these queries, which is of independent interest. Experiments show that our approximation strategy achieves competitive results, and that including queries with existentially quantified variables tends to improve the general performance of these models, both on tree-like queries and on our approximation strategy.
This document defines a method for FIR system modelling which is very trivial as it only depends on phase introduction and removal (allpass filters). As magnitude is not altered, the processing is numerically stable. It is limited to phase alteration which maintains the time domain magnitude to force a system within its linear limits.
Refinement calculus provides a structured framework for the progressive and modular development of programs, ensuring their correctness throughout the refinement process. This paper introduces a refinement calculus tailored for quantum programs. To this end, we first study the partial correctness of nondeterministic programs within a quantum while language featuring prescription statements. Orthogonal projectors, which are equivalent to subspaces of the state Hilbert space, are taken as assertions for quantum states. In addition to the denotational semantics where a nondeterministic program is associated with a set of trace-nonincreasing super-operators, we also present their semantics in transforming a postcondition to the weakest liberal postconditions and, conversely, transforming a precondition to the strongest postconditions. Subsequently, refinement rules are introduced based on these dual semantics, offering a systematic approach to the incremental development of quantum programs applicable in various contexts. To illustrate the practical application of the refinement calculus, we examine examples such as the implementation of a $Z$-rotation gate, the repetition code, and the quantum-to-quantum Bernoulli factory. Furthermore, we present Quire, a Python-based interactive prototype tool that provides practical support to programmers engaged in the stepwise development of correct quantum programs.
We address the communication overhead of distributed sparse matrix-(multiple)-vector multiplication in the context of large-scale eigensolvers, using filter diagonalization as an example. The basis of our study is a performance model which includes a communication metric that is computed directly from the matrix sparsity pattern without running any code. The performance model quantifies to which extent scalability and parallel efficiency are lost due to communication overhead. To restore scalability, we identify two orthogonal layers of parallelism in the filter diagonalization technique. In the horizontal layer the rows of the sparse matrix are distributed across individual processes. In the vertical layer bundles of multiple vectors are distributed across separate process groups. An analysis in terms of the communication metric predicts that scalability can be restored if, and only if, one implements the two orthogonal layers of parallelism via different distributed vector layouts. Our theoretical analysis is corroborated by benchmarks for application matrices from quantum and solid state physics, road networks, and nonlinear programming. We finally demonstrate the benefits of using orthogonal layers of parallelism with two exemplary application cases -- an exciton and a strongly correlated electron system -- which incur either small or large communication overhead.
Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achievedby acquiring and processing multiple images of the sample under different illumination conditions.One of the simplest techniques, Random Illumination Microscopy (RIM), forms the super-resolvedimage from the variance of images obtained with random speckled illuminations. However, thevalidity of this process has not been fully theorized. In this work, we characterize mathematicallythe sample information contained in the variance of diffraction-limited speckled images as a functionof the statistical properties of the illuminations. We show that an unambiguous two-fold resolutiongain is obtained when the speckle correlation length coincides with the width of the observationpoint spread function. Last, we analyze the difference between the variance-based techniques usingrandom speckled illuminations (as in RIM) and those obtained using random fluorophore activation(as in Super-resolution Optical Fluctuation Imaging, SOFI).
The reduced basis methods (RBMs) are widely use in fast solution of the parametrized parametrized linear systems. In some problems lacking good order-reduction condition, only the RBMs are not competent to give a high-precision solution with an affordable computational cost of the offline stage. To develop a high-precision solution and balance the offline and online cost, we explore a reasonable and effective framework for accelerating the iterative methods that is based on the RBMs. Firstly, the highly efficient reduced basis (RB) solver is used as the generation tool of accurate initial values. This data-driven initialization method could provide a warm start for the iterative methods. Secondly, we analyze the further acceleration of the RBMs as a preconditioner. For the purpose of high-precision solution, the RBM-preconditioner not only fail to accelerate the convergence but also need to pay more cost for the overuse of the RBMs. Two numerical test on 3D steady-state diffusion equations for two- and six-dimensional parameter space are presented to demonstrate the capability and efficiency of the RBM-initialized pure high-fidelity iterative methods.
The number of sampling methods could be daunting for a practitioner looking to cast powerful machine learning methods to their specific problem. This paper takes a theoretical stance to review and organize many sampling approaches in the ``generative modeling'' setting, where one wants to generate new data that are similar to some training examples. By revealing links between existing methods, it might prove useful to overcome some of the current challenges in sampling with diffusion models, such as long inference time due to diffusion simulation, or the lack of diversity in generated samples.
We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.
The simulation of geological facies in an unobservable volume is essential in various geoscience applications. Given the complexity of the problem, deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models, in particular their lack of physical realism. This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally simulating meandering channels in underground volumes. In this paper, we review the generative deep learning approaches, in particular the adversarial ones and the stabilization techniques that aim to facilitate their training. The proposed approach is tested on 2D and 3D simulations generated by the stochastic process-based model Flumy. Morphological metrics are utilized to compare our proposed method with earlier iterations of generative adversarial networks. The results indicate that by utilizing recent stabilization techniques, generative adversarial networks can efficiently sample from target data distributions. Moreover, we demonstrate the ability to simulate conditioned simulations through the latent variable model property of the proposed approach.
Navigating the challenges of data-driven speech processing, one of the primary hurdles is accessing reliable pathological speech data. While public datasets appear to offer solutions, they come with inherent risks of potential unintended exposure of patient health information via re-identification attacks. Using a comprehensive real-world pathological speech corpus, with over n=3,800 test subjects spanning various age groups and speech disorders, we employed a deep-learning-driven automatic speaker verification (ASV) approach. This resulted in a notable mean equal error rate (EER) of 0.89% with a standard deviation of 0.06%, outstripping traditional benchmarks. Our comprehensive assessments demonstrate that pathological speech overall faces heightened privacy breach risks compared to healthy speech. Specifically, adults with dysphonia are at heightened re-identification risks, whereas conditions like dysarthria yield results comparable to those of healthy speakers. Crucially, speech intelligibility does not influence the ASV system's performance metrics. In pediatric cases, particularly those with cleft lip and palate, the recording environment plays a decisive role in re-identification. Merging data across pathological types led to a marked EER decrease, suggesting the potential benefits of pathological diversity in ASV, accompanied by a logarithmic boost in ASV effectiveness. In essence, this research sheds light on the dynamics between pathological speech and speaker verification, emphasizing its crucial role in safeguarding patient confidentiality in our increasingly digitized healthcare era.
In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense.