亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Clothing for robots can help expand a robot's functionality and also clarify the robot's purpose to bystanders. In studying how to design clothing for robots, we can shed light on the functional role of aesthetics in interactive system design. We present a case study of designing a utility belt for an agricultural robot. We use reflection-in-action to consider the ways that observation, in situ making, and documentation serve to illuminate how pragmatic, aesthetic, and intellectual inquiry are layered in this applied design research project. Themes explored in this pictorial include 1) contextual discovery of materials, tools, and practices, 2) design space exploration of materials in context, 3) improvising spaces for making, and 4) social processes in design. These themes emerged from the qualitative coding of 25 reflection-in-action videos from the researcher. We conclude with feedback on the utility belt prototypes for an agriculture robot and our learnings about context, materials, and people needed to design successful novel clothing forms for robots.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Accumulated Local Effects (ALE) is a model-agnostic approach for global explanations of the results of black-box machine learning (ML) algorithms. There are at least three challenges with conducting statistical inference based on ALE: ensuring the reliability of ALE analyses, especially in the context of small datasets; intuitively characterizing a variable's overall effect in ML; and making robust inferences from ML data analysis. In response, we introduce innovative tools and techniques for statistical inference using ALE, establishing bootstrapped confidence intervals tailored to dataset size and introducing ALE effect size measures that intuitively indicate effects on both the outcome variable scale and a normalized scale. Furthermore, we demonstrate how to use these tools to draw reliable statistical inferences, reflecting the flexible patterns ALE adeptly highlights, with implementations available in the 'ale' package in R. This work propels the discourse on ALE and its applicability in ML and statistical analysis forward, offering practical solutions to prevailing challenges in the field.

Reproducibility is widely acknowledged as a fundamental principle in scientific research. Currently, the scientific community grapples with numerous challenges associated with reproducibility, often referred to as the ''reproducibility crisis.'' This crisis permeated numerous scientific disciplines. In this study, we examined the factors in scientific practices that might contribute to this lack of reproducibility. Significant focus is placed on the prevalent integration of computation in research, which can sometimes function as a black box in published papers. Our study primarily focuses on highperformance computing (HPC), which presents unique reproducibility challenges. This paper provides a comprehensive review of these concerns and potential solutions. Furthermore, we discuss the critical role of reproducible research in advancing science and identifying persisting issues within the field of HPC.

Generative artificial intelligence tools like large language models are rapidly transforming academic research and real world applications. However, discussions on ethical guidelines for generative AI in science remain fragmented, underscoring the urgent need for consensus based standards. This paper offers an initial framework by developing analyses and mitigation strategies across five key themes: understanding model limitations regarding truthfulness and bias; respecting privacy, confidentiality, and copyright; avoiding plagiarism and policy violations when incorporating model output; ensuring applications provide overall benefit; and using AI transparently and reproducibly. Common scenarios are outlined to demonstrate potential ethical violations. We argue that global consensus coupled with professional training and reasonable enforcement are critical to promoting the benefits of AI while safeguarding research integrity.

A recurring problem in software development is incorrect decision making on the techniques, methods and tools to be used. Mostly, these decisions are based on developers' perceptions about them. A factor influencing people's perceptions is past experience, but it is not the only one. In this research, we aim to discover how well the perceptions of the defect detection effectiveness of different techniques match their real effectiveness in the absence of prior experience. To do this, we conduct an empirical study plus a replication. During the original study, we conduct a controlled experiment with students applying two testing techniques and a code review technique. At the end of the experiment, they take a survey to find out which technique they perceive to be most effective. The results show that participants' perceptions are wrong and that this mismatch is costly in terms of quality. In order to gain further insight into the results, we replicate the controlled experiment and extend the survey to include questions about participants' opinions on the techniques and programs. The results of the replicated study confirm the findings of the original study and suggest that participants' perceptions might be based not on their opinions about complexity or preferences for techniques but on how well they think that they have applied the techniques.

Context: Experiment replications play a central role in the scientific method. Although software engineering experimentation has matured a great deal, the number of experiment replications is still relatively small. Software engineering experiments are composed of complex concepts, procedures and artefacts. Laboratory packages are a means of transfer-ring knowledge among researchers to facilitate experiment replications. Objective: This paper investigates the experiment replication process to find out what information is needed to successfully replicate an experiment. Our objective is to propose the content and structure of laboratory packages for software engineering experiments. Method: We evaluated seven replications of three different families of experiments. Each replication had a different experimenter who was, at the time, unfamiliar with the experi-ment. During the first iterations of the study, we identified experimental incidents and then proposed a laboratory package structure that addressed these incidents, including docu-ment usability improvements. We used the later iterations to validate and generalize the laboratory package structure for use in all software engineering experiments. We aimed to solve a specific problem, while at the same time looking at how to contribute to the body of knowledge on laboratory packages. Results: We generated a laboratory package for three different experiments. These packages eased the replication of the respective experiments. The evaluation that we conducted shows that the laboratory package proposal is acceptable and reduces the effort currently required to replicate experiments in software engineering. Conclusion: We think that the content and structure that we propose for laboratory pack-ages can be useful for other software engineering experiments.

Robust grasping is a major, and still unsolved, problem in robotics. Information about the 3D shape of an object can be obtained either from prior knowledge (e.g., accurate models of known objects or approximate models of familiar objects) or real-time sensing (e.g., partial point clouds of unknown objects) and can be used to identify good potential grasps. However, due to modeling and sensing inaccuracies, local exploration is often needed to refine such grasps and successfully apply them in the real world. The recently proposed unscented Bayesian optimization technique can make such exploration safer by selecting grasps that are robust to uncertainty in the input space (e.g., inaccuracies in the grasp execution). Extending our previous work on 2D optimization, in this paper we propose a 3D haptic exploration strategy that combines unscented Bayesian optimization with a novel collision penalty heuristic to find safe grasps in a very efficient way: while by augmenting the search-space to 3D we are able to find better grasps, the collision penalty heuristic allows us to do so without increasing the number of exploration steps.

This study proposes a Network to recognize displacement of a RC frame structure from a video by a monocular camera. The proposed Network consists of two modules which is FlowNet2 and POFRN-Net. FlowNet2 is used to generate dense optical flow as well as POFRN-Net is to extract pose parameter H. FlowNet2 convert two video frames into dense optical flow. POFRN-Net is inputted dense optical flow from FlowNet2 to output the pose parameter H. The displacement of any points of structure can be calculated from parameter H. The Fast Fourier Transform (FFT) is applied to obtain frequency domain signal from corresponding displacement signal. Furthermore, the comparison of the truth displacement on the First floor of the First video is shown in this study. Finally, the predicted displacements on four floors of RC frame structure of given three videos are exhibited in the last of this study.

The deformed energy method has shown to be a good option for dimensional synthesis of mechanisms. In this paper the introduction of some new features to such approach is proposed. First, constraints fixing dimensions of certain links are introduced in the error function of the synthesis problem. Second, requirements on distances between determinate nodes are included in the error function for the analysis of the deformed position problem. Both the overall synthesis error function and the inner analysis error function are optimized using a Sequential Quadratic Problem (SQP) approach. This also reduces the probability of branch or circuit defects. In the case of the inner function analytical derivatives are used, while in the synthesis optimization approximate derivatives have been introduced. Furthermore, constraints are analyzed under two formulations, the Euclidean distance and an alternative approach that uses the previous raised to the power of two. The latter approach is often used in kinematics, and simplifies the computation of derivatives. Some examples are provided to show the convergence order of the error function and the fulfilment of the constraints in both formulations studied under different topological situations or achieved energy levels.

Objective: Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poster children for personalized, data-driven healthcare. Many prediction models are deployed for decision support based on their prediction accuracy in validation studies. We investigate whether this is a safe and valid approach. Materials and Methods: We show that using prediction models for decision making can lead to harmful decisions, even when the predictions exhibit good discrimination after deployment. These models are harmful self-fulfilling prophecies: their deployment harms a group of patients but the worse outcome of these patients does not invalidate the predictive power of the model. Results: Our main result is a formal characterization of a set of such prediction models. Next we show that models that are well calibrated before and after deployment are useless for decision making as they made no change in the data distribution. Discussion: Our results point to the need to revise standard practices for validation, deployment and evaluation of prediction models that are used in medical decisions. Conclusion: Outcome prediction models can yield harmful self-fulfilling prophecies when used for decision making, a new perspective on prediction model development, deployment and monitoring is needed.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司