亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating samples given a specific label requires estimating conditional distributions. We derive a tractable upper bound of the Wasserstein distance between conditional distributions to lay the theoretical groundwork to learn conditional distributions. Based on this result, we propose a novel conditional generation algorithm where conditional distributions are fully characterized by a metric space defined by a statistical distance. We employ optimal transport theory to propose the Wasserstein geodesic generator, a new conditional generator that learns the Wasserstein geodesic. The proposed method learns both conditional distributions for observed domains and optimal transport maps between them. The conditional distributions given unobserved intermediate domains are on the Wasserstein geodesic between conditional distributions given two observed domain labels. Experiments on face images with light conditions as domain labels demonstrate the efficacy of the proposed method.

相關內容

Sampling from multimodal distributions is a challenging task in scientific computing. When a distribution has an exact symmetry between the modes, direct jumps among them can accelerate the samplings significantly. However, the distributions from most applications do not have exact symmetries. This paper considers the distributions with approximate symmetries. We first construct an exactly symmetric reference distribution from the target one by averaging over the group orbit associated with the approximate symmetry. Next, we can apply the multilevel Monte Carlo methods by constructing a continuation path between the reference and target distributions. We discuss how to implement these steps with annealed importance sampling and tempered transitions. Compared with traditional multilevel methods, the proposed approach can be more effective since the reference and target distributions are much closer. Numerical results of the Ising models are presented to illustrate the efficiency of the proposed method.

Sampling from distributions play a crucial role in aiding practitioners with statistical inference. However, in numerous situations, obtaining exact samples from complex distributions is infeasible. Consequently, researchers often turn to approximate sampling techniques to address this challenge. Fast approximate sampling from complicated distributions has gained much traction in the last few years with considerable progress in this field. Previous work has shown that for some problems a preconditioning can make the algorithm faster. In our research, we explore the Langevin Monte Carlo (LMC) algorithm and demonstrate its effectiveness in enabling inference from the obtained samples. Additionally, we establish a convergence rate for the LMC Markov chain in total variation. Lastly, we derive non-asymptotic bounds for approximate sampling from specific target distributions in the Wasserstein distance, particularly when the preconditioning is spatially invariant.

We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation (MMLE) procedure to estimate the parameters of a latent variable model. We achieve this by formulating a continuous-time interacting particle system which can be seen as a Langevin diffusion over an extended state space of parameters and latent variables. In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure where number of particles acts as the inverse temperature parameter in classical settings for global optimisation. Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error in a manner that is uniform in time and does not increase with the number of particles. The discretisation results in an algorithm, termed Interacting Particle Langevin Algorithm (IPLA) which can be used for MMLE. We further prove nonasymptotic bounds for the optimisation error of our estimator in terms of key parameters of the problem, and also extend this result to the case of stochastic gradients covering practical scenarios. We provide numerical experiments to illustrate the empirical behaviour of our algorithm in the context of logistic regression with verifiable assumptions. Our setting provides a straightforward way to implement a diffusion-based optimisation routine compared to more classical approaches such as the Expectation Maximisation (EM) algorithm, and allows for especially explicit nonasymptotic bounds.

Sampling from multimodal distributions is a challenging task in scientific computing. When a distribution has an exact symmetry between the modes, direct jumps among them can accelerate the samplings significantly. However, the distributions from most applications do not have exact symmetries. This paper considers the distributions with approximate symmetries. We first construct an exactly symmetric reference distribution from the target one by averaging over the group orbit associated with the approximate symmetry. Next, we can apply the multilevel Monte Carlo methods by constructing a continuation path between the reference and target distributions. We discuss how to implement these steps with annealed importance sampling and tempered transitions. Compared with traditional multilevel methods, the proposed approach can be more effective since the reference and target distributions are much closer. Numerical results of the Ising models are presented to illustrate the efficiency of the proposed method.

We propose a unified dynamic tracking algorithmic framework (PLAY-CS) to reconstruct signal sequences with their intrinsic structured dynamic sparsity. By capitalizing on specific statistical assumptions concerning the dynamic filter of the signal sequences, the proposed framework exhibits versatility by encompassing various existing dynamic compressive sensing (DCS) algorithms. This is achieved through the incorporation of a newly proposed Partial-Laplacian filtering sparsity model, tailored to capture a more sophisticated dynamic sparsity. In practical scenarios such as dynamic channel tracking in wireless communications, the framework demonstrates enhanced performance compared to existing DCS algorithms.

Current multilingual semantic parsing (MSP) datasets are almost all collected by translating the utterances in the existing datasets from the resource-rich language to the target language. However, manual translation is costly. To reduce the translation effort, this paper proposes the first active learning procedure for MSP (AL-MSP). AL-MSP selects only a subset from the existing datasets to be translated. We also propose a novel selection method that prioritizes the examples diversifying the logical form structures with more lexical choices, and a novel hyperparameter tuning method that needs no extra annotation cost. Our experiments show that AL-MSP significantly reduces translation costs with ideal selection methods. Our selection method with proper hyperparameters yields better parsing performance than the other baselines on two multilingual datasets.

In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution. We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors in high-dimensional spaces. Our approach advances inference using implicit distributions by introducing novel bounds that come about by locally linearising the neural sampler. This is distinct from existing methods that rely on additional discriminator networks and unstable adversarial objectives. Furthermore, we present a new sampler architecture that, for the first time, enables implicit distributions over millions of latent variables, addressing computational concerns by using differentiable numerical approximations. Our empirical analysis indicates our method is capable of recovering correlations across layers in large Bayesian neural networks, a property that is crucial for a network's performance but notoriously challenging to achieve. To the best of our knowledge, no other method has been shown to accomplish this task for such large models. Through experiments in downstream tasks, we demonstrate that our expressive posteriors outperform state-of-the-art uncertainty quantification methods, validating the effectiveness of our training algorithm and the quality of the learned implicit approximation.

Optimal Transport is a useful metric to compare probability distributions and to compute a pairing given a ground cost. Its entropic regularization variant (eOT) is crucial to have fast algorithms and reflect fuzzy/noisy matchings. This work focuses on Inverse Optimal Transport (iOT), the problem of inferring the ground cost from samples drawn from a coupling that solves an eOT problem. It is a relevant problem that can be used to infer unobserved/missing links, and to obtain meaningful information about the structure of the ground cost yielding the pairing. On one side, iOT benefits from convexity, but on the other side, being ill-posed, it requires regularization to handle the sampling noise. This work presents an in-depth theoretical study of the l1 regularization to model for instance Euclidean costs with sparse interactions between features. Specifically, we derive a sufficient condition for the robust recovery of the sparsity of the ground cost that can be seen as a far reaching generalization of the Lasso's celebrated Irrepresentability Condition. To provide additional insight into this condition, we work out in detail the Gaussian case. We show that as the entropic penalty varies, the iOT problem interpolates between a graphical Lasso and a classical Lasso, thereby establishing a connection between iOT and graph estimation, an important problem in ML.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

北京阿比特科技有限公司