亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution. We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors in high-dimensional spaces. Our approach advances inference using implicit distributions by introducing novel bounds that come about by locally linearising the neural sampler. This is distinct from existing methods that rely on additional discriminator networks and unstable adversarial objectives. Furthermore, we present a new sampler architecture that, for the first time, enables implicit distributions over millions of latent variables, addressing computational concerns by using differentiable numerical approximations. Our empirical analysis indicates our method is capable of recovering correlations across layers in large Bayesian neural networks, a property that is crucial for a network's performance but notoriously challenging to achieve. To the best of our knowledge, no other method has been shown to accomplish this task for such large models. Through experiments in downstream tasks, we demonstrate that our expressive posteriors outperform state-of-the-art uncertainty quantification methods, validating the effectiveness of our training algorithm and the quality of the learned implicit approximation.

相關內容

The optimization of expensive-to-evaluate black-box functions is prevalent in various scientific disciplines. Bayesian optimization is an automatic, general and sample-efficient method to solve these problems with minimal knowledge of the underlying function dynamics. However, the ability of Bayesian optimization to incorporate prior knowledge or beliefs about the function at hand in order to accelerate the optimization is limited, which reduces its appeal for knowledgeable practitioners with tight budgets. To allow domain experts to customize the optimization routine, we propose ColaBO, the first Bayesian-principled framework for incorporating prior beliefs beyond the typical kernel structure, such as the likely location of the optimizer or the optimal value. The generality of ColaBO makes it applicable across different Monte Carlo acquisition functions and types of user beliefs. We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.

We formulate a new information-theoretic principle--the shifted composition rule--which bounds the divergence (e.g., Kullback-Leibler or R\'enyi) between the laws of two stochastic processes via the introduction of auxiliary shifts. In this paper, we apply this principle to prove reverse transport inequalities for diffusions which, by duality, imply F.-Y. Wang's celebrated dimension-free Harnack inequalities. Our approach bridges continuous-time coupling methods from geometric analysis with the discrete-time shifted divergence technique from differential privacy and sampling. It also naturally gives rise to (1) an alternative continuous-time coupling method based on optimal transport, which bypasses Girsanov transformations, (2) functional inequalities for discrete-time processes, and (3) a family of "reverse" Harnack inequalities.

In theory, diffusion curves promise complex color gradations for infinite-resolution vector graphics. In practice, existing realizations suffer from poor scaling, discretization artifacts, or insufficient support for rich boundary conditions. Previous applications of the boundary element method to diffusion curves have relied on polygonal approximations, which either forfeit the high-order smoothness of B\'ezier curves, or, when the polygonal approximation is extremely detailed, result in large and costly systems of equations that must be solved. In this paper, we utilize the boundary integral equation method to accurately and efficiently solve the underlying partial differential equation. Given a desired resolution and viewport, we then interpolate this solution and use the boundary element method to render it. We couple this hybrid approach with the fast multipole method on a non-uniform quadtree for efficient computation. Furthermore, we introduce an adaptive strategy to enable truly scalable infinite-resolution diffusion curves.

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This representation method can also maintain the flexibility of language. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR employs the diffusion model and the pre-trained language model (e.g., T5 and CLIP). We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into image SR, yields excellent results on both synthetic and real-world images. Code: //github.com/zhengchen1999/PromptSR.

Statistical inference is often simplified by sample-splitting. This simplification comes at the cost of the introduction of randomness that is not native to the data. We propose a simple procedure for sequentially aggregating statistics constructed with multiple splits of the same sample. The user specifies a bound and a nominal error rate. If the procedure is implemented twice on the same data, the nominal error rate approximates the chance that the results differ by more than the bound. We provide a non-asymptotic analysis of the accuracy of the nominal error rate and illustrate the application of the procedure to several widely applied statistical methods.

Linear structural causal models (SCMs) are used to express and analyse the relationships between random variables. Direct causal effects are represented as directed edges and confounding factors as bidirected edges. Identifying the causal parameters from correlations between the nodes is an open problem in artificial intelligence. In this paper, we study SCMs whose directed component forms a tree. Van der Zander et al. (AISTATS'22, PLMR 151, pp. 6770--6792, 2022) give a PSPACE-algorithm for the identification problem in this case, which is a significant improvement over the general Gr\"obner basis approach, which has doubly-exponential time complexity in the number of structural parameters. In this work, we present a randomized polynomial-time algorithm, which solves the identification problem for tree-shaped SCMs. For every structural parameter, our algorithms decides whether it is generically identifiable, generically 2-identifiable, or generically unidentifiable. (No other cases can occur.) In the first two cases, it provides one or two fractional affine square root terms of polynomials (FASTPs) for the corresponding parameter, respectively.

Task-oriented conversational datasets often lack topic variability and linguistic diversity. However, with the advent of Large Language Models (LLMs) pretrained on extensive, multilingual and diverse text data, these limitations seem overcome. Nevertheless, their generalisability to different languages and domains in dialogue applications remains uncertain without benchmarking datasets. This paper presents a holistic annotation approach for emotion and conversational quality in the context of bilingual customer support conversations. By performing annotations that take into consideration the complete instances that compose a conversation, one can form a broader perspective of the dialogue as a whole. Furthermore, it provides a unique and valuable resource for the development of text classification models. To this end, we present benchmarks for Emotion Recognition and Dialogue Quality Estimation and show that further research is needed to leverage these models in a production setting.

We consider the problem of inference for non-stationary time series with heavy-tailed error distribution. Under a time-varying linear process framework we show that there exists a suitable local approximation by a stationary process with heavy-tails. This enable us to introduce a local approximation-based estimator which estimates consistently time-varying parameters of the model at hand. To develop a robust method, we also suggest a self-weighing scheme which is shown to recover the asymptotic normality of the estimator regardless of whether the finite variance of the underlying process exists. Empirical evidence favoring this approach is provided.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司