亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The optimization of expensive-to-evaluate black-box functions is prevalent in various scientific disciplines. Bayesian optimization is an automatic, general and sample-efficient method to solve these problems with minimal knowledge of the underlying function dynamics. However, the ability of Bayesian optimization to incorporate prior knowledge or beliefs about the function at hand in order to accelerate the optimization is limited, which reduces its appeal for knowledgeable practitioners with tight budgets. To allow domain experts to customize the optimization routine, we propose ColaBO, the first Bayesian-principled framework for incorporating prior beliefs beyond the typical kernel structure, such as the likely location of the optimizer or the optimal value. The generality of ColaBO makes it applicable across different Monte Carlo acquisition functions and types of user beliefs. We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.

相關內容

The multi-view hash method converts heterogeneous data from multiple views into binary hash codes, which is one of the critical technologies in multimedia retrieval. However, the current methods mainly explore the complementarity among multiple views while lacking confidence learning and fusion. Moreover, in practical application scenarios, the single-view data contain redundant noise. To conduct the confidence learning and eliminate unnecessary noise, we propose a novel Adaptive Confidence Multi-View Hashing (ACMVH) method. First, a confidence network is developed to extract useful information from various single-view features and remove noise information. Furthermore, an adaptive confidence multi-view network is employed to measure the confidence of each view and then fuse multi-view features through a weighted summation. Lastly, a dilation network is designed to further enhance the feature representation of the fused features. To the best of our knowledge, we pioneer the application of confidence learning into the field of multimedia retrieval. Extensive experiments on two public datasets show that the proposed ACMVH performs better than state-of-the-art methods (maximum increase of 3.24%). The source code is available at //github.com/HackerHyper/ACMVH.

Functional kriging approaches have been developed to predict the curves at unobserved spatial locations. However, most existing approaches are based on variogram fittings rather than constructing hierarchical statistical models. Therefore, it is challenging to analyze the relationships between functional variables, and uncertainty quantification of the model is not trivial. In this manuscript, we propose a Bayesian framework for spatial function-on-function regression. However, inference for the proposed model has computational and inferential challenges because the model needs to account for within and between-curve dependencies. Furthermore, high-dimensional and spatially correlated parameters can lead to the slow mixing of Markov chain Monte Carlo algorithms. To address these issues, we first utilize a basis transformation approach to simplify the covariance and apply projection methods for dimension reduction. We also develop a simultaneous band score for the proposed model to detect the significant region in the regression function. We apply the methods to simulated and real datasets, including data on particulate matter in Japan and mobility data in South Korea. The proposed method is computationally efficient and provides accurate estimations and predictions.

In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination ($R^2)$, which then induces a prior on the individual parameters. We achieve this by placing a beta prior on $R^2$ and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest approximating the prior by using a generalized beta prime distribution and provide a simple default prior construction scheme. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated and real-world data, where the method particularly shines in high-dimensional settings, as well as modeling random effects.

We examine the relationship between the mutual information between the output model and the empirical sample and the generalization of the algorithm in the context of stochastic convex optimization. Despite increasing interest in information-theoretic generalization bounds, it is uncertain if these bounds can provide insight into the exceptional performance of various learning algorithms. Our study of stochastic convex optimization reveals that, for true risk minimization, dimension-dependent mutual information is necessary. This indicates that existing information-theoretic generalization bounds fall short in capturing the generalization capabilities of algorithms like SGD and regularized ERM, which have dimension-independent sample complexity.

Existing unsupervised deep product quantization methods primarily aim for the increased similarity between different views of the identical image, whereas the delicate multi-level semantic similarities preserved between images are overlooked. Moreover, these methods predominantly focus on the Euclidean space for computational convenience, compromising their ability to map the multi-level semantic relationships between images effectively. To mitigate these shortcomings, we propose a novel unsupervised product quantization method dubbed \textbf{Hi}erarchical \textbf{H}yperbolic \textbf{P}roduct \textbf{Q}uantization (HiHPQ), which learns quantized representations by incorporating hierarchical semantic similarity within hyperbolic geometry. Specifically, we propose a hyperbolic product quantizer, where the hyperbolic codebook attention mechanism and the quantized contrastive learning on the hyperbolic product manifold are introduced to expedite quantization. Furthermore, we propose a hierarchical semantics learning module, designed to enhance the distinction between similar and non-matching images for a query by utilizing the extracted hierarchical semantics as an additional training supervision. Experiments on benchmarks show that our proposed method outperforms state-of-the-art baselines.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem. In addition, we discuss generalizability and computational cost of the learned extension operators.

High-dimensional and incomplete (HDI) matrix contains many complex interactions between numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model is remarkably effective in extracting valuable information from an HDI matrix. However, such a model commonly encounters the problem of slow convergence because a standard SGD algorithm only considers the current learning error to compute the stochastic gradient without considering the historical and future state of the learning error. To address this critical issue, this paper innovatively proposes an ADRC-incorporated SGD (ADS) algorithm by refining the instance learning error by considering the historical and future state by following the principle of an ADRC controller. With it, an ADS-based LFA model is further achieved for fast and accurate latent factor analysis on an HDI matrix. Empirical studies on two HDI datasets demonstrate that the proposed model outperforms the state-of-the-art LFA models in terms of computational efficiency and accuracy for predicting the missing data of an HDI matrix.

Representing graph data in a low-dimensional space for subsequent tasks is the purpose of attributed graph embedding. Most existing neural network approaches learn latent representations by minimizing reconstruction errors. Rare work considers the data distribution and the topological structure of latent codes simultaneously, which often results in inferior embeddings in real-world graph data. This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) method for attributed graph data to improve the stability and quality of learned representations to tackle the crowding problem. The node-to-node geodesic similarity is preserved between the original and latent space under a pre-defined distribution. The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets, which validates our solutions. We promise to release the code after acceptance.

Network slicing is a crucial enabler and a trend for the Next Generation Mobile Network (NGMN) and various other new systems like the Internet of Vehicles (IoV) and Industrial IoT (IIoT). Orchestration and machine learning are key elements with a crucial role in the network-slicing processes since the NS process needs to orchestrate resources and functionalities, and machine learning can potentially optimize the orchestration process. However, existing network-slicing architectures lack the ability to define intelligent approaches to orchestrate features and resources in the slicing process. This paper discusses machine learning-based orchestration of features and capabilities in network slicing architectures. Initially, the slice resource orchestration and allocation in the slicing planning, configuration, commissioning, and operation phases are analyzed. In sequence, we highlight the need for optimized architectural feature orchestration and recommend using ML-embed agents, federated learning intrinsic mechanisms for knowledge acquisition, and a data-driven approach embedded in the network slicing architecture. We further develop an architectural features orchestration case embedded in the SFI2 network slicing architecture. An attack prevention security mechanism is developed for the SFI2 architecture using distributed embedded and cooperating ML agents. The case presented illustrates the architectural feature's orchestration process and benefits, highlighting its importance for the network slicing process.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司