Cell-free massive MIMO is emerging as a promising technology for future wireless communication systems, which is expected to offer uniform coverage and high spectral efficiency compared to classical cellular systems. We study in this paper how cell-free massive MIMO can support federated edge learning. Taking advantage of the additive nature of the wireless multiple access channel, over-the-air computation is exploited, where the clients send their local updates simultaneously over the same communication resource. This approach, known as over-the-air federated learning (OTA-FL), is proven to alleviate the communication overhead of federated learning over wireless networks. Considering channel correlation and only imperfect channel state information available at the central server, we propose a practical implementation of OTA-FL over cell-free massive MIMO. The convergence of the proposed implementation is studied analytically and experimentally, confirming the benefits of cell-free massive MIMO for OTA-FL.
Federated learning has gained popularity as a means of training models distributed across the wireless edge. The paper introduces delay-aware federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training by addressing communication delays between edge and cloud. DFL employs multiple stochastic gradient descent iterations on device datasets during each global aggregation interval and intermittently aggregates model parameters through edge servers in local subnetworks. The cloud server synchronizes the local models with the global deployed model computed via a local-global combiner at global synchronization. The convergence behavior of DFL is theoretically investigated under a generalized data heterogeneity metric. A set of conditions is obtained to achieve the sub-linear convergence rate of O(1/k). Based on these findings, an adaptive control algorithm is developed for DFL, implementing policies to mitigate energy consumption and edge-to-cloud communication latency while aiming for a sublinear convergence rate. Numerical evaluations show DFL's superior performance in terms of faster global model convergence, reduced resource consumption, and robustness against communication delays compared to existing FL algorithms. In summary, this proposed method offers improved efficiency and satisfactory results when dealing with both convex and non-convex loss functions.
Federated Semi-supervised Learning (FSSL) combines techniques from both fields of federated and semi-supervised learning to improve the accuracy and performance of models in a distributed environment by using a small fraction of labeled data and a large amount of unlabeled data. Without the need to centralize all data in one place for training, it collect updates of model training after devices train models at local, and thus can protect the privacy of user data. However, during the federal training process, some of the devices fail to collect enough data for local training, while new devices will be included to the group training. This leads to an unbalanced global data distribution and thus affect the performance of the global model training. Most of the current research is focusing on class imbalance with a fixed number of classes, while little attention is paid to data imbalance with a variable number of classes. Therefore, in this paper, we propose Federated Semi-supervised Learning for Class Variable Imbalance (FCVI) to solve class variable imbalance. The class-variable learning algorithm is used to mitigate the data imbalance due to changes of the number of classes. Our scheme is proved to be significantly better than baseline methods, while maintaining client privacy.
Federated learning, which allows multiple client devices in a network to jointly train a machine learning model without direct exposure of clients' data, is an emerging distributed learning technique due to its nature of privacy preservation. However, it has been found that models trained with federated learning usually have worse performance than their counterparts trained in the standard centralized learning mode, especially when the training data is imbalanced. In the context of federated learning, data imbalance may occur either locally one one client device, or globally across many devices. The complexity of different types of data imbalance has posed challenges to the development of federated learning technique, especially considering the need of relieving data imbalance issue and preserving data privacy at the same time. Therefore, in the literature, many attempts have been made to handle class imbalance in federated learning. In this paper, we present a detailed review of recent advancements along this line. We first introduce various types of class imbalance in federated learning, after which we review existing methods for estimating the extent of class imbalance without the need of knowing the actual data to preserve data privacy. After that, we discuss existing methods for handling class imbalance in FL, where the advantages and disadvantages of the these approaches are discussed. We also summarize common evaluation metrics for class imbalanced tasks, and point out potential future directions.
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient framework for distributed machine learning using training data distributed at edge devices. This framework enables all edge devices to transmit model updates simultaneously over the entire available bandwidth, allowing for over-the-air aggregation. A one-bit digital over-the-air aggregation (OBDA) scheme has been recently proposed, featuring one-bit gradient quantization at edge devices and majority-voting based decoding at the edge server. However, the low-resolution one-bit gradient quantization slows down the model convergence and leads to performance degradation. On the other hand, the aggregation errors caused by fading channels in Air-FEEL is still remained to be solved. To address these issues, we propose the error-feedback one-bit broadband digital aggregation (EFOBDA) and an optimized power control policy. To this end, we first provide a theoretical analysis to evaluate the impact of error feedback on the convergence of FL with EFOBDA. The analytical results show that, by setting an appropriate feedback strength, EFOBDA is comparable to the Air-FEEL without quantization, thus enhancing the performance of OBDA. Then, we further introduce a power control policy by maximizing the convergence rate under instantaneous power constraints. The convergence analysis and optimized power control policy are verified by the experiments, which show that the proposed scheme achieves significantly faster convergence and higher test accuracy in image classification tasks compared with the one-bit quantization scheme without error feedback or optimized power control policy.
The design of message passing (MP) algorithms on factor graphs is an effective manner to implement channel estimation (CE) in wireless communication systems, which performance can be further improved by exploiting prior probability models that accurately match the channel characteristics. In this work, we study the CE problem in a downlink massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. As the prior probability, we propose the Markov chain two-state Gaussian mixture with large variance differences (TSGM-LVD) model to exploit the structured sparsity in the angle-frequency domain of the channel. Existing single and combined MP rules cannot deal with the message computation of the proposed probability model. To overcome this issue, we present a general method to derive the hybrid message passing (HMP) rule, which allows the calculation of messages described by mixed linear and non-linear functions. Accordingly, we design the HMP-TSGM-LVD algorithm under the structured turbo framework (STF). Simulation results demonstrate that the proposed algorithm converges faster and obtains better and more stable performance than its counterparts. In particular, the gain of the proposed approach is maximum (3 dB) in the high signal-to-noise ratio regime, while benchmark approaches experience oscillating behavior due to the improper prior model characterization.
We propose a method for channel training and precoding in FDD massive MIMO based on deep neural networks (DNNs), exploiting Downlink (DL) channel covariance knowledge. The DNN is optimized to maximize the DL multi-user sum-rate, by producing a pre-beamforming matrix based on user channel covariances that maps the original channel vectors to effective channels. Measurements of these effective channels are received at the users via common pilot transmission and sent back to the base station (BS) through analog feedback without further processing. The BS estimates the effective channels from received feedback and constructs a linear precoder by concatenating the optimized pre-beamforming matrix with a zero-forcing precoder over the effective channels. We show that the proposed method yields significantly higher sum-rates than the state-of-the-art DNN-based channel training and precoding scheme, especially in scenarios with small pilot and feedback size relative to the channel coherence block length. Unlike many works in the literature, our proposition does not involve deployment of a DNN at the user side, which typically comes at a high computational cost and parameter-transmission overhead on the system, and is therefore considerably more practical.
Connected and Automated Vehicles (CAVs) are one of the emerging technologies in the automotive domain that has the potential to alleviate the issues of accidents, traffic congestion, and pollutant emissions, leading to a safe, efficient, and sustainable transportation system. Machine learning-based methods are widely used in CAVs for crucial tasks like perception, motion planning, and motion control, where machine learning models in CAVs are solely trained using the local vehicle data, and the performance is not certain when exposed to new environments or unseen conditions. Federated learning (FL) is an effective solution for CAVs that enables a collaborative model development with multiple vehicles in a distributed learning framework. FL enables CAVs to learn from a wide range of driving environments and improve their overall performance while ensuring the privacy and security of local vehicle data. In this paper, we review the progress accomplished by researchers in applying FL to CAVs. A broader view of the various data modalities and algorithms that have been implemented on CAVs is provided. Specific applications of FL are reviewed in detail, and an analysis of the challenges and future scope of research are presented.
Personalized Federated Learning (PFL) is a new Federated Learning (FL) paradigm, particularly tackling the heterogeneity issues brought by various mobile user equipments (UEs) in mobile edge computing (MEC) networks. However, due to the ever-increasing number of UEs and the complicated administrative work it brings, it is desirable to switch the PFL algorithm from its conventional two-layer framework to a multiple-layer one. In this paper, we propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks. The UEs in HPFL are divided into multiple clusters, and the UEs in each cluster forward their local updates to the edge server (ES) synchronously for edge model aggregation, while the ESs forward their edge models to the cloud server semi-asynchronously for global model aggregation. The above training manner leads to a tradeoff between the training loss in each round and the round latency. HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation as well as the ES scheduling policy in the hierarchical learning framework. Extensive experiments verify that HPFL not only guarantees convergence in hierarchical aggregation frameworks but also has advantages in round training loss maximization and round latency minimization.
With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.