We propose a method for channel training and precoding in FDD massive MIMO based on deep neural networks (DNNs), exploiting Downlink (DL) channel covariance knowledge. The DNN is optimized to maximize the DL multi-user sum-rate, by producing a pre-beamforming matrix based on user channel covariances that maps the original channel vectors to effective channels. Measurements of these effective channels are received at the users via common pilot transmission and sent back to the base station (BS) through analog feedback without further processing. The BS estimates the effective channels from received feedback and constructs a linear precoder by concatenating the optimized pre-beamforming matrix with a zero-forcing precoder over the effective channels. We show that the proposed method yields significantly higher sum-rates than the state-of-the-art DNN-based channel training and precoding scheme, especially in scenarios with small pilot and feedback size relative to the channel coherence block length. Unlike many works in the literature, our proposition does not involve deployment of a DNN at the user side, which typically comes at a high computational cost and parameter-transmission overhead on the system, and is therefore considerably more practical.
Subband-based approaches process subbands in parallel through the model with shared parameters to learn the commonality of local spectrums for noise reduction. In this way, they have achieved remarkable results with fewer parameters. However, in some complex environments, the lack of global spectral information has a negative impact on the performance of these subband-based approaches. To this end, this paper introduces the subband interaction as a new way to complement the subband model with the global spectral information such as cross-band dependencies and global spectral patterns, and proposes a new lightweight single-channel speech enhancement framework called Interactive Subband Network (Inter-SubNet). Experimental results on DNS Challenge - Interspeech 2021 dataset show that the proposed Inter-SubNet yields a significant improvement over the subband model and outperforms other state-of-the-art speech enhancement approaches, which demonstrate the effectiveness of subband interaction.
Channel splicing is a rather new and very promising concept. It allows to realize a wideband channel sounder by combining multiple narrow-band measurements. Among others, channel splicing is a sparse sensing techniques suggested for use in joint communication and sensing (JCAS), channel measurements and prediction using cheap hardware that cannot measure wideband channels directly such as in the internet of things (IoT). This work validates the practicality of a channel splicing technique by integrating it into an OFDM-based IEEE 802.11ac system, which we consider representative for many IoT solutions. Our system allows computing both the channel impulse response (CIR) and the channel frequency response (CFR). In this paper, we concentrate on the impact of the number of sub-bands in our study and show that even using only 50% of the overall spectrum leads to very accurate CIR measures. We validate the system in simulation and confirm the results in an experimental in-door scenario using software defined radios.
Channel modeling is a fundamental task for the design and evaluation of wireless technologies and networks, before actual prototyping, commercial product development and real deployments. The recent trends of current and future mobile networks, which include large antenna systems, massive deployments, and high-frequency bands, require complex channel models for the accurate simulation of massive MIMO in mmWave and THz bands. To address the complexity/accuracy trade-off, a spatial channel model has been defined by 3GPP (TR 38.901), which has been shown to be the main bottleneck of current system-level simulations in ns-3. In this paper, we focus on improving the channel modeling efficiency for large-scale MIMO system-level simulations. Extensions are developed in two directions. First, we improve the efficiency of the current 3GPP TR 38.901 implementation code in ns-3, by allowing the use of the Eigen library for more efficient matrix algebra operations, among other optimizations and a more modular code structure. Second, we propose a new performance-oriented MIMO channel model for reduced complexity, as an alternative model suitable for mmWave}/THz bands, and calibrate it against the 3GPP TR 38.901 model. Simulation results demonstrate the proper calibration of the newly introduced model for various scenarios and channel conditions, and exhibit an effective reduction of the simulation time (up to 16 times compared to the previous baseline) thanks to the various proposed improvements.
The ParaOpt algorithm was recently introduced as a time-parallel solver for optimal-control problems with a terminal-cost objective, and convergence results have been presented for the linear diffusive case with implicit-Euler time integrators. We reformulate ParaOpt for tracking problems and provide generalized convergence analyses for both objectives. We focus on linear diffusive equations and prove convergence bounds that are generic in the time integrators used. For large problem dimensions, ParaOpt's performance depends crucially on having a good preconditioner to solve the arising linear systems. For the case where ParaOpt's cheap, coarse-grained propagator is linear, we introduce diagonalization-based preconditioners inspired by recent advances in the ParaDiag family of methods. These preconditioners not only lead to a weakly-scalable ParaOpt version, but are themselves invertible in parallel, making maximal use of available concurrency. They have proven convergence properties in the linear diffusive case that are generic in the time discretization used, similarly to our ParaOpt results. Numerical results confirm that the iteration count of the iterative solvers used for ParaOpt's linear systems becomes constant in the limit of an increasing processor count. The paper is accompanied by a sequential MATLAB implementation.
In this paper we study the personalized book recommender system in a child-robot interactive environment. Firstly, we propose a novel text search algorithm using an inverse filtering mechanism that improves the efficiency. Secondly, we propose a user interest prediction method based on the Bayesian network and a novel feedback mechanism. According to children's fuzzy language input, the proposed method gives the predicted interests. Thirdly, the domain specific synonym association is proposed based on word vectorization, in order to improve the understanding of user intention. Experimental results show that the proposed recommender system has an improved performance and it can operate on embedded consumer devices with limited computational resources.
We present a deep reinforcement learning approach to a classical problem in fluid dynamics, i.e., the reduction of the drag of a bluff body. We cast the problem as a discrete-time control with continuous action space: at each time step, an autonomous agent can set the flow rate of two jets of fluid, positioned at the back of the body. The agent, trained with Proximal Policy Optimization, learns an effective strategy to make the jets interact with the vortexes of the wake, thus reducing the drag. To tackle the computational complexity of the fluid dynamics simulations, which would make the training procedure prohibitively expensive, we train the agent on a coarse discretization of the domain. We provide numerical evidence that a policy trained in this approximate environment still retains good performance when carried over to a denser mesh. Our simulations show a considerable drag reduction with a consequent saving of total power, defined as the sum of the power spent by the control system and of the power of the drag force, amounting to 40% when compared to simulations with the reference bluff body without any jet. Finally, we qualitatively investigate the control policy learnt by the neural network. We can observe that it achieves the drag reduction by learning the frequency of formation of the vortexes and activating the jets accordingly, thus blowing them away off the rear body surface.
Arguably, the largest class of stochastic processes generated by means of a finite memory consists of those that are sequences of observations produced by sequential measurements in a suitable generalized probabilistic theory (GPT). These are constructed from a finite-dimensional memory evolving under a set of possible linear maps, and with probabilities of outcomes determined by linear functions of the memory state. Examples of such models are given by classical hidden Markov processes, where the memory state is a probability distribution, and at each step it evolves according to a non-negative matrix, and hidden quantum Markov processes, where the memory state is a finite dimensional quantum state, and at each step it evolves according to a completely positive map. Here we show that the set of processes admitting a finite-dimensional explanation do not need to be explainable in terms of either classical probability or quantum mechanics. To wit, we exhibit families of processes that have a finite-dimensional explanation, defined manifestly by the dynamics of explicitly given GPT, but that do not admit a quantum, and therefore not even classical, explanation in finite dimension. Furthermore, we present a family of quantum processes on qubits and qutrits that do not admit a classical finite-dimensional realization, which includes examples introduced earlier by Fox, Rubin, Dharmadikari and Nadkarni as functions of infinite dimensional Markov chains, and lower bound the size of the memory of a classical model realizing a noisy version of the qubit processes.
Natural language generation from structured data mainly focuses on surface-level descriptions, suffering from uncontrollable content selection and low fidelity. Previous works leverage logical forms to facilitate logical knowledge-conditioned text generation. Though achieving remarkable progress, they are data-hungry, which makes the adoption for real-world applications challenging with limited data. To this end, this paper proposes a unified framework for logical knowledge-conditioned text generation in the few-shot setting. With only a few seeds logical forms (e.g., 20/100 shot), our approach leverages self-training and samples pseudo logical forms based on content and structure consistency. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.
Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.