亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-language models (VLMs) have recently shown promising results in traditional downstream tasks. Evaluation studies have emerged to assess their abilities, with the majority focusing on the third-person perspective, and only a few addressing specific tasks from the first-person perspective. However, the capability of VLMs to "think" from a first-person perspective, a crucial attribute for advancing autonomous agents and robotics, remains largely unexplored. To bridge this research gap, we introduce EgoThink, a novel visual question-answering benchmark that encompasses six core capabilities with twelve detailed dimensions. The benchmark is constructed using selected clips from egocentric videos, with manually annotated question-answer pairs containing first-person information. To comprehensively assess VLMs, we evaluate eighteen popular VLMs on EgoThink. Moreover, given the open-ended format of the answers, we use GPT-4 as the automatic judge to compute single-answer grading. Experimental results indicate that although GPT-4V leads in numerous dimensions, all evaluated VLMs still possess considerable potential for improvement in first-person perspective tasks. Meanwhile, enlarging the number of trainable parameters has the most significant impact on model performance on EgoThink. In conclusion, EgoThink serves as a valuable addition to existing evaluation benchmarks for VLMs, providing an indispensable resource for future research in the realm of embodied artificial intelligence and robotics.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Chatbot · MoDELS · 可辨認的 · 情景 ·
2024 年 1 月 18 日

AI-driven chatbots such as ChatGPT have caused a tremendous hype lately. For BPM applications, several applications for AI-driven chatbots have been identified to be promising to generate business value, including explanation of process mining outcomes and preparation of input data. However, a systematic analysis of chatbots for their support of conversational process modeling as a process-oriented capability is missing. This work aims at closing this gap by providing a systematic analysis of existing chatbots. Application scenarios are identified along the process life cycle. Then a systematic literature review on conversational process modeling is performed, resulting in a taxonomy of application scenarios for conversational process modeling, including paraphrasing and improvement of process descriptions. In addition, this work suggests and applies an evaluation method for the output of AI-driven chatbots with respect to completeness and correctness of the process models. This method consists of a set of KPIs on a test set, a set of prompts for task and control flow extraction, as well as a survey with users. Based on the literature and the evaluation, recommendations for the usage (practical implications) and further development (research directions) of conversational process modeling are derived.

The rapid development of large language models (LLMs) has yielded impressive success in various downstream tasks. However, the vast potential and remarkable capabilities of LLMs also raise new security and privacy concerns if they are exploited for nefarious purposes due to their open-endedness. For example, LLMs may be used to plagiarize or imitate writing, thereby infringing the copyright of the original content, or to create indiscriminate fake information based on a certain source text. In some cases, LLMs can even analyze text from the Internet to infer personal privacy. Unfortunately, previous text protection research could not foresee the emergence of powerful LLMs, rendering it no longer effective in this new context. To bridge this gap, we introduce Silent Guardian (SG), a text protection mechanism against LLMs, which allows LLMs to refuse to generate response when receiving protected text, preventing the malicious use of text from the source. Specifically, we first propose the concept of Truncation Protection Examples (TPE). By carefully modifying the text to be protected, TPE can induce LLMs to first sample the end token, thus directly terminating the interaction. In addition, to efficiently construct TPE in the discrete space of text data, we propose a novel optimization algorithm called Super Taliored Protection (STP), which is not only highly efficient but also maintains the semantic consistency of the text during the optimization process. The comprehensive experimental evaluation demonstrates that SG can effectively protect the target text under various configurations and achieve almost 100% protection success rate in some cases. Notably, SG also exhibits relatively good transferability and robustness, making its application in practical scenarios possible.

Instruction-tuned large language models (LLMs) excel at many tasks, and will even provide explanations for their behavior. Since these models are directly accessible to the public, there is a risk that convincing and wrong explanations can lead to unsupported confidence in LLMs. Therefore, interpretability-faithfulness of self-explanations is an important consideration for AI Safety. Assessing the interpretability-faithfulness of these explanations, termed self-explanations, is challenging as the models are too complex for humans to annotate what is a correct explanation. To address this, we propose employing self-consistency checks as a measure of faithfulness. For example, if an LLM says a set of words is important for making a prediction, then it should not be able to make the same prediction without these words. While self-consistency checks are a common approach to faithfulness, they have not previously been applied to LLM's self-explanations. We apply self-consistency checks to three types of self-explanations: counterfactuals, importance measures, and redactions. Our work demonstrate that faithfulness is both task and model dependent, e.g., for sentiment classification, counterfactual explanations are more faithful for Llama2, importance measures for Mistral, and redaction for Falcon 40B. Finally, our findings are robust to prompt-variations.

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: 1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. 2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. 3) SAM performed better with manual hints, especially box, than the Everything mode. 4) SAM could help human annotation with high labeling quality and less time. 5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. 6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. 7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. 8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.

Large language models (LLMs) have demonstrated remarkable advancements and have attracted significant efforts to develop LLMs into agents capable of executing intricate multi-step decision-making tasks beyond traditional NLP applications. Existing approaches to LLM-based decision-making predominantly build upon the manually-designed external performance metrics to guide the decision-making process. However, reliance on the external performance metrics as prior is problematic in real-world scenarios, where such prior may be unavailable, flawed, or even erroneous. For genuine autonomous decision making, it is imperative for the agent to develop its rationality from its posterior experiences to judge decisions independently. Central to the development of rationality is the construction of an internalized utility judgment, capable of assigning numerical utilities to each decision. This paper proposes RadAgent (Rational Decision-Making Agent), which fosters the development of its rationality through an iterative framework involving Experience Exploration and Utility Learning. Within this framework, Elo-based Utility Construction is devised to assign Elo scores to individual decision steps to judge their utilities via pairwise comparisons. Consequently, these Elo scores guide the decision-making process to derive optimal outcomes. Experimental results on the ToolBench dataset demonstrate RadAgent's superiority over baselines, achieving over 10% improvement in Pass Rate on diverse tasks. It offers higher-quality solutions and reduces costs (ChatGPT API calls), highlighting its effectiveness and efficiency.

We propose a framework to evaluate the random-coding union bound with parameter $s$ on the achievable error probability in the finite-blocklength regime for a pilot-assisted transmission scheme operating over an imperfectly synchronized and memoryless block-fading waveform channel. Unlike previous results, which disregard the effects of imperfect synchronization, our framework utilizes pilots for both synchronization and channel estimation. Specifically, we provide an algorithm to perform joint synchronization and channel estimation and verify its accuracy by observing its tightness in comparison with the Cramer-Rao bound. Then, we develop an RCUs bound on the error probability, which applies for a receiver that treats the estimates provided by the algorithm as accurate. Additionally, we utilize the saddlepoint approximation to provide a numerically efficient method for evaluating the RCUs bound in this scenario. Our numerical experiments verify the accuracy of the proposed approximation. Moreover, when transmission blocks are received synchronously, numerical results indicate that the number of pilot symbols needed to estimate the fading channel gains to the level of accuracy required in ultra-reliable low-latency communication is also sufficient to acquire sufficiently good synchronization. However, when the blocks are received asynchronously, synchronization becomes the bottleneck for the system performance.

Large language models (LLMs) have revolutionized many areas (e.g. natural language processing, software engineering, etc.) by achieving state-of-the-art performance on extensive downstream tasks. Aiming to achieve robust and general artificial intelligence, there has been a surge of interest in investigating the reasoning ability of the LLMs. Whereas the textual and numerical reasoning benchmarks adopted by previous works are rather shallow and simple, it is hard to conclude that the LLMs possess strong reasoning ability by merely achieving positive results on these benchmarks. Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems that require common-sense planning by evaluating their performance on the reinforcement learning benchmarks. In this work, we conduct an in-depth assessment of several state-of-the-art LLMs' reasoning ability based on the inductive logic programming (ILP) benchmark, which is broadly recognized as a representative and challenging measurement for evaluating logic program induction/synthesis systems as it requires inducing strict cause-effect logic to achieve robust deduction on independent and identically distributed (IID) and out-of-distribution (OOD) test samples. Our evaluations illustrate that compared with the neural program induction systems which are much smaller in model size, the state-of-the-art LLMs are much poorer in terms of reasoning ability by achieving much lower performance and generalization using either natural language prompting or truth-value matrix prompting.

Recent advances in deep learning techniques have achieved remarkable performance in several computer vision problems. A notably intuitive technique called Curriculum Learning (CL) has been introduced recently for training deep learning models. Surprisingly, curriculum learning achieves significantly improved results in some tasks but marginal or no improvement in others. Hence, there is still a debate about its adoption as a standard method to train supervised learning models. In this work, we investigate the impact of curriculum learning in crowd counting using the density estimation method. We performed detailed investigations by conducting 112 experiments using six different CL settings using eight different crowd models. Our experiments show that curriculum learning improves the model learning performance and shortens the convergence time.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.

北京阿比特科技有限公司