The impact of person-job fit on job satisfaction and performance is widely acknowledged, which highlights the importance of providing workers with next steps at the right time in their career. This task of predicting the next step in a career is known as career path prediction, and has diverse applications such as turnover prevention and internal job mobility. Existing methods to career path prediction rely on large amounts of private career history data to model the interactions between job titles and companies. We propose leveraging the unexplored textual descriptions that are part of work experience sections in resumes. We introduce a structured dataset of 2,164 anonymized career histories, annotated with ESCO occupation labels. Based on this dataset, we present a novel representation learning approach, CareerBERT, specifically designed for work history data. We develop a skill-based model and a text-based model for career path prediction, which achieve 35.24% and 39.61% recall@10 respectively on our dataset. Finally, we show that both approaches are complementary as a hybrid approach achieves the strongest result with 43.01% recall@10.
Visual Question Answering (VQA) is one of the most important tasks in autonomous driving, which requires accurate recognition and complex situation evaluations. However, datasets annotated in a QA format, which guarantees precise language generation and scene recognition from driving scenes, have not been established yet. In this work, we introduce Markup-QA, a novel dataset annotation technique in which QAs are enclosed within markups. This approach facilitates the simultaneous evaluation of a model's capabilities in sentence generation and VQA. Moreover, using this annotation methodology, we designed the NuScenes-MQA dataset. This dataset empowers the development of vision language models, especially for autonomous driving tasks, by focusing on both descriptive capabilities and precise QA. The dataset is available at //github.com/turingmotors/NuScenes-MQA.
The pervasive deployment of surveillance cameras produces a massive volume of data, requiring nuanced interpretation. This study thoroughly examines data representation and visualization techniques tailored for AI surveillance data within current infrastructures. It delves into essential data metrics, methods for situational awareness, and various visualization techniques, highlighting their potential to enhance safety and guide urban development. This study is built upon real-world research conducted in a community college environment, utilizing eight cameras over eight days. This study presents tools like the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps to elucidate pedestrian behaviors, surveillance, and public safety. Given the intricate data from smart video surveillance, such as bounding boxes and segmented images, we aim to convert these computer vision results into intuitive visualizations and actionable insights for stakeholders, including law enforcement, urban planners, and social scientists. The results emphasize the crucial impact of visualizing AI surveillance data on emergency handling, public health protocols, crowd control, resource distribution, predictive modeling, city planning, and informed decision-making.
The surge in electricity use, coupled with the dependency on intermittent renewable energy sources, poses significant hurdles to effectively managing power grids, particularly during times of peak demand. Demand Response programs and energy conservation measures are essential to operate energy grids while ensuring a responsible use of our resources This research combines distributed optimization using ADMM with Deep Learning models to plan indoor temperature setpoints effectively. A two-layer hierarchical structure is used, with a central building coordinator at the upper layer and local controllers at the thermal zone layer. The coordinator must limit the building's maximum power by translating the building's total power to local power targets for each zone. Local controllers can modify the temperature setpoints to meet the local power targets. The resulting control algorithm, called Distributed Planning Networks, is designed to be both adaptable and scalable to many types of buildings, tackling two of the main challenges in the development of such systems. The proposed approach is tested on an 18-zone building modeled in EnergyPlus. The algorithm successfully manages Demand Response peak events.
Entity alignment seeks identical entities in different knowledge graphs, which is a long-standing task in the database research. Recent work leverages deep learning to embed entities in vector space and align them via nearest neighbor search. Although embedding-based entity alignment has gained marked success in recent years, it lacks explanations for alignment decisions. In this paper, we present the first framework that can generate explanations for understanding and repairing embedding-based entity alignment results. Given an entity alignment pair produced by an embedding model, we first compare its neighbor entities and relations to build a matching subgraph as a local explanation. We then construct an alignment dependency graph to understand the pair from an abstract perspective. Finally, we repair the pair by resolving three types of alignment conflicts based on dependency graphs. Experiments on five datasets demonstrate the effectiveness and generalization of our framework in explaining and repairing embedding-based entity alignment results.
Accountability in the workplace is critically important and remains a challenging problem, especially with respect to workplace safety management. In this paper, we introduce a novel notion, the Internet of Responsibilities, for accountability management. Our method sorts through the list of responsibilities with respect to hazardous positions. The positions are interconnected using directed acyclic graphs (DAGs) indicating the hierarchy of responsibilities in the organization. In addition, the system detects and collects responsibilities, and represents risk areas in terms of the positions of the responsibility nodes. Finally, an automatic reminder and assignment system is used to enforce a strict responsibility control without human intervention. Using blockchain technology, we further extend our system with the capability to store, recover and encrypt responsibility data. We show that through the application of the Internet of Responsibility network model driven by Big Data, enterprise and government agencies can attain a highly secured and safe workplace. Therefore, our model offers a combination of interconnected responsibilities, accountability, monitoring, and safety which is crucial for the protection of employees and the success of organizations.
Substantial scholarship has estimated the susceptibility of jobs to automation, but little has examined how job contents evolve in the information age as new technologies substitute for tasks, shifting required skills rather than eliminating entire jobs. Here we explore patterns and consequences of changes in occupational skill and characterize occupations and workers subject to the greatest re-skilling pressure. Recent work found that changing skill requirements are greatest for STEM occupations. Nevertheless, analyzing 167 million online job posts covering 727 occupations over the last decade, we find that re-skilling pressure is greatest for low-skilled occupations when accounting for distance between skills. We further investigate the differences in skill change across employer and market size, as well as social demographic groups, and find that these differences tend to widen the economic divide. Jobs from large employers and markets experienced less change relative to small employers and markets, and non-white workers in low-skilled jobs are most demographically vulnerable. We conclude by showcasing our model's potential to precisely chart job evolution towards machine-interface integration using skill embedding spaces.
Face clustering tasks can learn hierarchical semantic information from large-scale data, which has the potential to help facilitate face recognition. However, there are few works on this problem. This paper explores it by proposing a joint optimization task of label classification and supervised contrastive clustering to introduce the cluster knowledge to the traditional face recognition task in two ways. We first extend ArcFace with a cluster-guided angular margin to adjust the within-class feature distribution according to the hard level of face clustering. Secondly, we propose a supervised contrastive clustering approach to pull the features to the cluster center and propose the cluster-aligning procedure to align the cluster center and the learnable class center in the classifier for joint training. Finally, extensive qualitative and quantitative experiments on popular facial benchmarks demonstrate the effectiveness of our paradigm and its superiority over the existing approaches to face recognition.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.