亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural networks have been increasingly employed in Model Predictive Controller (MPC) to control nonlinear dynamic systems. However, MPC still poses a problem that an achievable update rate is insufficient to cope with model uncertainty and external disturbances. In this paper, we present a novel control scheme that can design an optimal tracking controller using the neural network dynamics of the MPC, making it possible to be applied as a plug-and-play extension for any existing model-based feedforward controller. We also describe how our method handles a neural network containing historical information, which does not follow a general form of dynamics. The proposed method is evaluated by its performance in classical control benchmarks with external disturbances. We also extend our control framework to be applied in an aggressive autonomous driving task with unknown friction. In all experiments, our method outperformed the compared methods by a large margin. Our controller also showed low control chattering levels, demonstrating that our feedback controller does not interfere with the optimal command of MPC.

相關內容

Due to the COVID 19 pandemic, smartphone-based proximity tracing systems became of utmost interest. Many of these systems use BLE signals to estimate the distance between two persons. The quality of this method depends on many factors and, therefore, does not always deliver accurate results. In this paper, we present a multi-channel approach to improve proximity classification, and a novel, publicly available data set that contains matched IEEE 802.11 (2.4 GHz and 5 GHz) and BLE signal strength data, measured in four different environments. We have developed and evaluated a combined classification model based on BLE and IEEE 802.11 signals. Our approach significantly improves the distance classification and consequently also the contact tracing accuracy. We are able to achieve good results with our approach in everyday public transport scenarios. However, in our implementation based on IEEE 802.11 probe requests, we also encountered privacy problems and limitations due to the consistency and interval at which such probes are sent. We discuss these limitations and sketch how our approach could be improved to make it suitable for real-world deployment.

Automated vehicles require the ability to cooperate with humans for smooth integration into today's traffic. While the concept of cooperation is well known, developing a robust and efficient cooperative trajectory planning method is still a challenge. One aspect of this challenge is the uncertainty surrounding the state of the environment due to limited sensor accuracy. This uncertainty can be represented by a Partially Observable Markov Decision Process. Our work addresses this problem by extending an existing cooperative trajectory planning approach based on Monte Carlo Tree Search for continuous action spaces. It does so by explicitly modeling uncertainties in the form of a root belief state, from which start states for trees are sampled. After the trees have been constructed with Monte Carlo Tree Search, their results are aggregated into return distributions using kernel regression. We apply two risk metrics for the final selection, namely a Lower Confidence Bound and a Conditional Value at Risk. It can be demonstrated that the integration of risk metrics in the final selection policy consistently outperforms a baseline in uncertain environments, generating considerably safer trajectories.

Many interventional surgical procedures rely on medical imaging to visualise and track instruments. Such imaging methods not only need to be real-time capable, but also provide accurate and robust positional information. In ultrasound applications, typically only two-dimensional data from a linear array are available, and as such obtaining accurate positional estimation in three dimensions is non-trivial. In this work, we first train a neural network, using realistic synthetic training data, to estimate the out-of-plane offset of an object with the associated axial aberration in the reconstructed ultrasound image. The obtained estimate is then combined with a Kalman filtering approach that utilises positioning estimates obtained in previous time-frames to improve localisation robustness and reduce the impact of measurement noise. The accuracy of the proposed method is evaluated using simulations, and its practical applicability is demonstrated on experimental data obtained using a novel optical ultrasound imaging setup. Accurate and robust positional information is provided in real-time. Axial and lateral coordinates for out-of-plane objects are estimated with a mean error of 0.1mm for simulated data and a mean error of 0.2mm for experimental data. Three-dimensional localisation is most accurate for elevational distances larger than 1mm, with a maximum distance of 6mm considered for a 25mm aperture.

Community detection refers to the problem of clustering the nodes of a network into groups. Existing inferential methods for community structure mainly focus on unweighted (binary) networks. Many real-world networks are nonetheless weighted and a common practice is to dichotomize a weighted network to an unweighted one which is known to result in information loss. Literature on hypothesis testing in the latter situation is still missing. In this paper, we study the problem of testing the existence of community structure in weighted networks. Our contributions are threefold: (a). We use the (possibly infinite-dimensional) exponential family to model the weights and derive the sharp information-theoretic limit for the existence of consistent test. Within the limit, any test is inconsistent; and beyond the limit, we propose a useful consistent test. (b). Based on the information-theoretic limits, we provide the first formal way to quantify the loss of information incurred by dichotomizing weighted graphs into unweighted graphs in the context of hypothesis testing. (c). We propose several new and practically useful test statistics. Simulation study show that the proposed tests have good performance. Finally, we apply the proposed tests to an animal social network.

For autonomous quadruped robot navigation in various complex environments, a typical SOTA system is composed of four main modules -- mapper, global planner, local planner, and command-tracking controller -- in a hierarchical manner. In this paper, we build a robust and safe local planner which is designed to generate a velocity plan to track a coarsely planned path from the global planner. Previous works used waypoint-based methods (e.g. Proportional-Differential control and pure pursuit) which simplify the path tracking problem to local point-goal navigation. However, they suffer from frequent collisions in geometrically complex and narrow environments because of two reasons; the global planner uses a coarse and inaccurate model and the local planner is unable to track the global plan sufficiently well. Currently, deep learning methods are an appealing alternative because they can learn safety and path feasibility from experience more accurately. However, existing deep learning methods are not capable of planning for a long horizon. In this work, we propose a learning-based fully autonomous navigation framework composed of three innovative elements: a learned forward dynamics model (FDM), an online sampling-based model-predictive controller, and an informed trajectory sampler (ITS). Using our framework, a quadruped robot can autonomously navigate in various complex environments without a collision and generate a smoother command plan compared to the baseline method. Furthermore, our method can reactively handle unexpected obstacles on the planned path and avoid them. Project page //awesomericky.github.io/projects/FDM_ITS_navigation/.

This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation for nonlinear systems subject to matched uncertainties. The proposed approach allows for the use of deep neural networks to learn uncertain dynamics while still providing guarantees of transient tracking performance throughout the learning phase. Within the proposed approach, a disturbance estimation law is adopted to estimate the pointwise value of the uncertainty, with pre-computable estimation error bounds (EEBs). The learned dynamics, the estimated disturbances, and the EEBs are then incorporated in a robust Riemannian energy condition to compute the control law that guarantees exponential convergence of actual trajectories to desired ones throughout the learning phase, even when the learned model is poor. On the other hand, with improved accuracy, the learned model can be incorporated into a high-level planner to plan better trajectories with improved performance, e.g., lower energy consumption and shorter travel time. The proposed framework is validated on a planar quadrotor navigation example.

This paper presents a hybrid robot motion planner that generates long-horizon motion plans for robot navigation in environments with obstacles. We propose a hybrid planner, RRT* with segmented trajectory optimization (RRT*-sOpt), which combines the merits of sampling-based planning, optimization-based planning, and trajectory splitting to quickly plan for a collision-free and dynamically-feasible motion plan. When generating a plan, the RRT* layer quickly samples a semi-optimal path and sets it as an initial reference path. Then, the sOpt layer splits the reference path and performs optimization on each segment. It then splits the new trajectory again and repeats the process until the whole trajectory converges. We also propose to reduce the number of segments before convergence with the aim of further reducing computation time. Simulation results show that RRT*-sOpt benefits from the hybrid structure with trajectory splitting and performs robustly in various robot platforms and scenarios.

The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.

The problem of active mapping aims to plan an informative sequence of sensing views given a limited budget such as distance traveled. This paper consider active occupancy grid mapping using a range sensor, such as LiDAR or depth camera. State-of-the-art methods optimize information-theoretic measures relating the occupancy grid probabilities with the range sensor measurements. The non-smooth nature of ray-tracing within a grid representation makes the objective function non-differentiable, forcing existing methods to search over a discrete space of candidate trajectories. This work proposes a differentiable approximation of the Shannon mutual information between a grid map and ray-based observations that enables gradient ascent optimization in the continuous space of SE(3) sensor poses. Our gradient-based formulation leads to more informative sensing trajectories, while avoiding occlusions and collisions. The proposed method is demonstrated in simulated and real-world experiments in 2-D and 3-D environments.

Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning can make adversarial training suitable for real-world robot applications. We evaluate a wide variety of robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment, to mobile robot gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative side-effects caused by adversarial training still outweigh the improvements by an order of magnitude. We conclude that more substantial advances in robust learning methods are necessary before they can benefit robot learning tasks in practice.

北京阿比特科技有限公司