The detection of Alzheimer's disease (AD) from spontaneous speech has attracted increasing attention while the sparsity of training data remains an important issue. This paper handles the issue by knowledge transfer, specifically from both speech-generic and depression-specific knowledge. The paper first studies sequential knowledge transfer from generic foundation models pretrained on large amounts of speech and text data. A block-wise analysis is performed for AD diagnosis based on the representations extracted from different intermediate blocks of different foundation models. Apart from the knowledge from speech-generic representations, this paper also proposes to simultaneously transfer the knowledge from a speech depression detection task based on the high comorbidity rates of depression and AD. A parallel knowledge transfer framework is studied that jointly learns the information shared between these two tasks. Experimental results show that the proposed method improves AD and depression detection, and produces a state-of-the-art F1 score of 0.928 for AD diagnosis on the commonly used ADReSSo dataset.
The tasks of automatic lyrics transcription and lyrics alignment have witnessed significant performance improvements in the past few years. However, most of the previous works only focus on English in which large-scale datasets are available. In this paper, we address lyrics transcription and alignment of polyphonic Mandarin pop music in a low-resource setting. To deal with the data scarcity issue, we adapt pretrained Whisper model and fine-tune it on a monophonic Mandarin singing dataset. With the use of data augmentation and source separation model, results show that the proposed method achieves a character error rate of less than 18% on a Mandarin polyphonic dataset for lyrics transcription, and a mean absolute error of 0.071 seconds for lyrics alignment. Our results demonstrate the potential of adapting a pretrained speech model for lyrics transcription and alignment in low-resource scenarios.
A fully discrete semi-convex-splitting finite-element scheme with stabilization for a degenerate Cahn-Hilliard cross-diffusion system is analyzed. The system consists of parabolic fourth-order equations for the volume fraction of the fiber phase and the solute concentration, modeling pre-patterning of lymphatic vessel morphology. The existence of discrete solutions is proved, and it is shown that the numerical scheme is energy stable up to stabilization, conserves the solute mass, and preserves the lower and upper bounds of the fiber phase fraction. Numerical experiments in two space dimensions using FreeFEM illustrate the phase segregation and pattern formation.
Coronary Artery Disease (CAD) is one of the most common forms of heart disease, which is caused by a buildup of atherosclerotic plaque (known as stenosis) in the coronary arteries, leading to insufficient supplement of blood, oxygen, and nutrients to the heart. Fractional Flow Reserve (FFR), measuring the pressure ratio between the aorta and distal coronary artery, is an invasive physiologic gold standard for assessing the severity of coronary artery stenosis. Despite its benefits, invasive FFR assessment is still underutilized due to its high cost, time-consuming, experimental variability, and increased risk to patients. In this study, an attention-based multi-fidelity machine learning model (AttMulFid) is proposed for computationally efficient and accurate FFR assessment with uncertainty measurement. Within AttMulFid, an autoencoder is utilized to intelligently select geometric features from coronary arteries, with additional attention on the key area. Results show that the geometric features are able to represent the entirety of the geometric information and intelligently allocate attention based on crucial properties of geometry. Furthermore, the AttMulFid is a feasible approach for non-invasive, rapid, and accurate FFR assessment (with 0.002s/simulation).
Positron emission tomography (PET) has been widely used for the diagnosis of serious diseases including cancer and Alzheimer's disease, based on the uptake of radiolabelled molecules that target certain pathological signatures. Recently, a novel imaging mode known as positronium lifetime imaging (PLI) has been shown possible with time-of-flight (TOF) PET as well. PLI is also of practical interest because it can provide complementary disease information reflecting conditions of the tissue microenvironment via mechanisms that are independent of tracer uptake. However, for the present practical systems that have a finite TOF resolution, the PLI reconstruction problem has yet to be fully formulated for the development of accurate reconstruction algorithms. This paper addresses this challenge by developing a statistical model for the PLI data and deriving from it a maximum-likelihood algorithm for reconstructing lifetime images alongside the uptake images. By using realistic computer simulation data, we show that the proposed algorithm can produce quantitatively accurate lifetime images.
We examine the extent to which sublinear-sample property testing and estimation applies to settings where samples are independently but not identically distributed. Specifically, we consider the following distributional property testing framework: Suppose there is a set of distributions over a discrete support of size $k$, $\textbf{p}_1, \textbf{p}_2,\ldots,\textbf{p}_T$, and we obtain $c$ independent draws from each distribution. Suppose the goal is to learn or test a property of the average distribution, $\textbf{p}_{\mathrm{avg}}$. This setup models a number of important practical settings where the individual distributions correspond to heterogeneous entities -- either individuals, chronologically distinct time periods, spatially separated data sources, etc. From a learning standpoint, even with $c=1$ samples from each distribution, $\Theta(k/\varepsilon^2)$ samples are necessary and sufficient to learn $\textbf{p}_{\mathrm{avg}}$ to within error $\varepsilon$ in TV distance. To test uniformity or identity -- distinguishing the case that $\textbf{p}_{\mathrm{avg}}$ is equal to some reference distribution, versus has $\ell_1$ distance at least $\varepsilon$ from the reference distribution, we show that a linear number of samples in $k$ is necessary given $c=1$ samples from each distribution. In contrast, for $c \ge 2$, we recover the usual sublinear sample testing of the i.i.d. setting: we show that $O(\sqrt{k}/\varepsilon^2 + 1/\varepsilon^4)$ samples are sufficient, matching the optimal sample complexity in the i.i.d. case in the regime where $\varepsilon \ge k^{-1/4}$. Additionally, we show that in the $c=2$ case, there is a constant $\rho > 0$ such that even in the linear regime with $\rho k$ samples, no tester that considers the multiset of samples (ignoring which samples were drawn from the same $\textbf{p}_i$) can perform uniformity testing.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to other robots. In this paper, we propose a method to learn correspondences among two or more robots that may have different morphologies. To be specific, besides robots with similar morphologies with different degrees of freedom, we show that a fixed-based manipulator robot with joint control and a differential drive mobile robot can be addressed within the proposed framework. To set up the correspondence among the robots considered, an initial base task is demonstrated to the robots to achieve the same goal. Then, a common latent representation is learned along with the individual robot policies for achieving the goal. After the initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robots to achieve the same task. We verified our system in a set of experiments where the correspondence between robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
In many applications, sparse and blocky coefficients often occur in regression and classification problems. The fused Lasso was designed to recover these sparse structured features especially when the design matrix encounters the situation of ultrahigh dimension. Quantile loss is well known as a robust loss function in regression and classification. In this paper, we combine quantile loss and fused Lasso penalty together to produce quantile fused Lasso which can achieve sparse and blocky feature selection in both regression and classification. Interestingly, our proposed model has the unified optimization formula for regression and classification. For ultrahigh dimensional collected data, we derive multi-block linearized alternating direction method of multipliers (LADMM) to deal with it. Moreover, we prove convergence and derive convergence rates of the proposed LADMM algorithm through an elegant method. Note that the algorithm can be easily extended to solve many existing fused Lasso models. Finally, we present some numerical results for several synthetic and real world examples, which illustrate the robustness, scalability, and accuracy of the proposed method.
Training networks consisting of biophysically accurate neuron models could allow for new insights into how brain circuits can organize and solve tasks. We begin by analyzing the extent to which the central algorithm for neural network learning -- stochastic gradient descent through backpropagation (BP) -- can be used to train such networks. We find that properties of biophysically based neural network models needed for accurate modelling such as stiffness, high nonlinearity and long evaluation timeframes relative to spike times makes BP unstable and divergent in a variety of cases. To address these instabilities and inspired by recent work, we investigate the use of "gradient-estimating" evolutionary algorithms (EAs) for training biophysically based neural networks. We find that EAs have several advantages making them desirable over direct BP, including being forward-pass only, robust to noisy and rigid losses, allowing for discrete loss formulations, and potentially facilitating a more global exploration of parameters. We apply our method to train a recurrent network of Morris-Lecar neuron models on a stimulus integration and working memory task, and show how it can succeed in cases where direct BP is inapplicable. To expand on the viability of EAs in general, we apply them to a general neural ODE problem and a stiff neural ODE benchmark and find again that EAs can out-perform direct BP here, especially for the over-parameterized regime. Our findings suggest that biophysical neurons could provide useful benchmarks for testing the limits of BP-adjacent methods, and demonstrate the viability of EAs for training networks with complex components.
Neural Persistence is a prominent measure for quantifying neural network complexity, proposed in the emerging field of topological data analysis in deep learning. In this work, however, we find both theoretically and empirically that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence. Whilst this captures useful information for linear classifiers, we find that no relevant spatial structure is present in later layers of deep neural networks, making neural persistence roughly equivalent to the variance of weights. Additionally, the proposed averaging procedure across layers for deep neural networks does not consider interaction between layers. Based on our analysis, we propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers, which is equivalent to calculating neural persistence on one particular matrix. This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues through standardisation. Code is available at //github.com/ExplainableML/Deep-Graph-Persistence .
The accurate classification of lymphoma subtypes using hematoxylin and eosin (H&E)-stained tissue is complicated by the wide range of morphological features these cancers can exhibit. We present LymphoML - an interpretable machine learning method that identifies morphologic features that correlate with lymphoma subtypes. Our method applies steps to process H&E-stained tissue microarray cores, segment nuclei and cells, compute features encompassing morphology, texture, and architecture, and train gradient-boosted models to make diagnostic predictions. LymphoML's interpretable models, developed on a limited volume of H&E-stained tissue, achieve non-inferior diagnostic accuracy to pathologists using whole-slide images and outperform black box deep-learning on a dataset of 670 cases from Guatemala spanning 8 lymphoma subtypes. Using SHapley Additive exPlanation (SHAP) analysis, we assess the impact of each feature on model prediction and find that nuclear shape features are most discriminative for DLBCL (F1-score: 78.7%) and classical Hodgkin lymphoma (F1-score: 74.5%). Finally, we provide the first demonstration that a model combining features from H&E-stained tissue with features from a standardized panel of 6 immunostains results in a similar diagnostic accuracy (85.3%) to a 46-stain panel (86.1%).