Chat Generative Pre-trained Transformer (ChatGPT) has gained significant interest and attention since its launch in November 2022. It has shown impressive performance in various domains, including passing exams and creative writing. However, challenges and concerns related to biases and trust persist. In this work, we present a comprehensive review of over 100 Scopus-indexed publications on ChatGPT, aiming to provide a taxonomy of ChatGPT research and explore its applications. We critically analyze the existing literature, identifying common approaches employed in the studies. Additionally, we investigate diverse application areas where ChatGPT has found utility, such as healthcare, marketing and financial services, software engineering, academic and scientific writing, research and education, environmental science, and natural language processing. Through examining these applications, we gain valuable insights into the potential of ChatGPT in addressing real-world challenges. We also discuss crucial issues related to ChatGPT, including biases and trustworthiness, emphasizing the need for further research and development in these areas. Furthermore, we identify potential future directions for ChatGPT research, proposing solutions to current challenges and speculating on expected advancements. By fully leveraging the capabilities of ChatGPT, we can unlock its potential across various domains, leading to advancements in conversational AI and transformative impacts in society.
Federated training of Graph Neural Networks (GNN) has become popular in recent years due to its ability to perform graph-related tasks under data isolation scenarios while preserving data privacy. However, graph heterogeneity issues in federated GNN systems continue to pose challenges. Existing frameworks address the problem by representing local tasks using different statistics and relating them through a simple aggregation mechanism. However, these approaches suffer from limited efficiency from two aspects: low quality of task-relatedness quantification and inefficacy of exploiting the collaboration structure. To address these issues, we propose FedGKD, a novel federated GNN framework that utilizes a novel client-side graph dataset distillation method to extract task features that better describe task-relatedness, and introduces a novel server-side aggregation mechanism that is aware of the global collaboration structure. We conduct extensive experiments on six real-world datasets of different scales, demonstrating our framework's outperformance.
The Dynamic Zero-COVID Policy in China spanned three years and diverse emotional responses have been observed at different times. In this paper, we retrospectively analyzed public sentiments and perceptions of the policy, especially regarding how they evolved over time, and how they related to people's lived experiences. Through sentiment analysis of 2,358 collected Weibo posts, we identified four representative points, i.e., policy initialization, sharp sentiment change, lowest sentiment score, and policy termination, for an in-depth discourse analysis through the lens of appraisal theory. In the end, we reflected on the evolving public sentiments toward the Dynamic Zero-COVID Policy and proposed implications for effective epidemic prevention and control measures for future crises.
In early 2021 the United States Capitol in Washington was stormed during a riot and violent attack. A similar storming occurred in Brazil in 2023. Although both attacks were instances in longer sequences of events, these have provided a testimony for many observers who had claimed that online actions, including the propagation of disinformation, have offline consequences. Soon after, a number of papers have been published about the relation between online disinformation and offline violence, among other related relations. Hitherto, the effects upon political protests have been unexplored. This paper thus evaluates such effects with a time series cross-sectional sample of 125 countries in a period between 2000 and 2019. The results are mixed. Based on Bayesian multi-level regression modeling, (i) there indeed is an effect between online disinformation and offline protests, but the effect is partially meditated by political polarization. The results are clearer in a sample of countries belonging to the European Economic Area. With this sample, (ii) offline protest counts increase from online disinformation disseminated by domestic governments, political parties, and politicians as well as by foreign governments. Furthermore, (iii) Internet shutdowns tend to decrease the counts, although, paradoxically, the absence of governmental online monitoring of social media tends to also decrease these. With these results, the paper contributes to the blossoming disinformation research by modeling the impact of disinformation upon offline phenomenon. The contribution is important due to the various policy measures planned or already enacted.
This work presents a new task of Text Expansion (TE), which aims to insert fine-grained modifiers into proper locations of the plain text to concretize or vivify human writings. Different from existing insertion-based writing assistance tasks, TE requires the model to be more flexible in both locating and generation, and also more cautious in keeping basic semantics. We leverage four complementary approaches to construct a dataset with 12 million automatically generated instances and 2K human-annotated references for both English and Chinese. To facilitate automatic evaluation, we design various metrics from multiple perspectives. In particular, we propose Info-Gain to effectively measure the informativeness of expansions, which is an important quality dimension in TE. On top of a pre-trained text-infilling model, we build both pipelined and joint Locate&Infill models, which demonstrate the superiority over the Text2Text baselines, especially in expansion informativeness. Experiments verify the feasibility of the TE task and point out potential directions for future research toward better automatic text expansion.
The union of Edge Computing (EC) and Artificial Intelligence (AI) has brought forward the Edge AI concept to provide intelligent solutions close to the end-user environment, for privacy preservation, low latency to real-time performance, and resource optimization. Machine Learning (ML), as the most advanced branch of AI in the past few years, has shown encouraging results and applications in the edge environment. Nevertheless, edge-powered ML solutions are more complex to realize due to the joint constraints from both edge computing and AI domains, and the corresponding solutions are expected to be efficient and adapted in technologies such as data processing, model compression, distributed inference, and advanced learning paradigms for Edge ML requirements. Despite the fact that a great deal of the attention garnered by Edge ML is gained in both the academic and industrial communities, we noticed the lack of a complete survey on existing Edge ML technologies to provide a common understanding of this concept. To tackle this, this paper aims at providing a comprehensive taxonomy and a systematic review of Edge ML techniques, focusing on the soft computing aspects of existing paradigms and techniques. We start by identifying the Edge ML requirements driven by the joint constraints. We then extensively survey more than twenty paradigms and techniques along with their representative work, covering two main parts: edge inference, and edge learning. In particular, we analyze how each technique fits into Edge ML by meeting a subset of the identified requirements. We also summarize Edge ML frameworks and open issues to shed light on future directions for Edge ML.
The 2022 Russian invasion of Ukraine has seen an intensification in the use of social media by governmental actors in cyber warfare. Wartime communication via memes has been a successful strategy used not only by independent accounts such as @uamemesforces, but also-for the first time in a full-scale interstate war-by official Ukrainian government accounts such as @Ukraine and @DefenceU. We study this prominent example of memetic warfare through the lens of its narratives, and find them to be a key component of success: tweets with a 'victim' narrative garner twice as many retweets. However, malevolent narratives focusing on the enemy resonate more than those about heroism or victims with countries providing more assistance to Ukraine. Our findings present a nuanced examination of Ukraine's influence operations and of the worldwide response to it, thus contributing new insights into the evolution of socio-technical systems in times of war.
With the advent of Neural Radiance Field (NeRF), representing 3D scenes through multiple observations has shown remarkable improvements in performance. Since this cutting-edge technique is able to obtain high-resolution renderings by interpolating dense 3D environments, various approaches have been proposed to apply NeRF for the spatial understanding of robot perception. However, previous works are challenging to represent unobserved scenes or views on the unexplored robot trajectory, as these works do not take into account 3D reconstruction without observation information. To overcome this problem, we propose a method to generate flipped observation in order to cover unexisting observation for unexplored robot trajectory. To achieve this, we propose a data augmentation method for 3D reconstruction using NeRF by flipping observed images, and estimating flipped camera 6DOF poses. Our technique exploits the property of objects being geometrically symmetric, making it simple but fast and powerful, thereby making it suitable for robotic applications where real-time performance is important. We demonstrate that our method significantly improves three representative perceptual quality measures on the NeRF synthetic dataset.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.