This paper proposes \textit{Contour Context}, a simple, effective, and efficient topological loop closure detection pipeline with accurate 3-DoF metric pose estimation, targeting the urban utonomous driving scenario. We interpret the Cartesian birds' eye view (BEV) image projected from 3D LiDAR points as layered distribution of structures. To recover elevation information from BEVs, we slice them at different heights, and connected pixels at each level will form contours. Each contour is parameterized by abstract information, e.g., pixel count, center position, covariance, and mean height. The similarity of two BEVs is calculated in sequential discrete and continuous steps. The first step considers the geometric consensus of graph-like constellations formed by contours in particular localities. The second step models the majority of contours as a 2.5D Gaussian mixture model, which is used to calculate correlation and optimize relative transform in continuous space. A retrieval key is designed to accelerate the search of a database indexed by layered KD-trees. We validate the efficacy of our method by comparing it with recent works on public datasets.
3D object detection is one of the most important tasks in autonomous driving and robotics. Our research focuses on tackling low efficiency issue of point-based methods on large-scale point clouds. Existing point-based methods adopt farthest point sampling (FPS) strategy for downsampling, which is computationally expensive in terms of inference time and memory consumption when the number of point cloud increases. In order to improve efficiency, we propose a novel Instance-Centroid Faster Point Sampling Module (IC-FPS) , which effectively replaces the first Set Abstraction (SA) layer that is extremely tedious. IC-FPS module is comprised of two methods, local feature diffusion based background point filter (LFDBF) and Centroid-Instance Sampling Strategy (CISS). LFDBF is constructed to exclude most invalid background points, while CISS substitutes FPS strategy by fast sampling centroids and instance points. IC-FPS module can be inserted to almost every point-based models. Extensive experiments on multiple public benchmarks have demonstrated the superiority of IC-FPS. On Waymo dataset, the proposed module significantly improves performance of baseline model and accelerates inference speed by 3.8 times. For the first time, real-time detection of point-based models in large-scale point cloud scenario is realized.
In recent years, great progress has been made in the Lift-Splat-Shot-based (LSS-based) 3D object detection method, which converts features of 2D camera view and 3D lidar view to Bird's-Eye-View (BEV) for feature fusion. However, inaccurate depth estimation (e.g. the 'depth jump' problem) is an obstacle to develop LSS-based methods. To alleviate the 'depth jump' problem, we proposed Edge-Aware Bird's-Eye-View (EA-BEV) projector. By coupling proposed edge-aware depth fusion module and depth estimate module, the proposed EA-BEV projector solves the problem and enforces refined supervision on depth. Besides, we propose sparse depth supervision and gradient edge depth supervision, for constraining learning on global depth and local marginal depth information. Our EA-BEV projector is a plug-and-play module for any LSS-based 3D object detection models, and effectively improves the baseline performance. We demonstrate the effectiveness on the nuScenes benchmark. On the nuScenes 3D object detection validation dataset, our proposed EA-BEV projector can boost several state-of-the-art LLS-based baselines on nuScenes 3D object detection benchmark and nuScenes BEV map segmentation benchmark with negligible increment of inference time.
We present a novel technique to estimate the 6D pose of objects from single images where the 3D geometry of the object is only given approximately and not as a precise 3D model. To achieve this, we employ a dense 2D-to-3D correspondence predictor that regresses 3D model coordinates for every pixel. In addition to the 3D coordinates, our model also estimates the pixel-wise coordinate error to discard correspondences that are likely wrong. This allows us to generate multiple 6D pose hypotheses of the object, which we then refine iteratively using a highly efficient region-based approach. We also introduce a novel pixel-wise posterior formulation by which we can estimate the probability for each hypothesis and select the most likely one. As we show in experiments, our approach is capable of dealing with extreme visual conditions including overexposure, high contrast, or low signal-to-noise ratio. This makes it a powerful technique for the particularly challenging task of estimating the pose of tumbling satellites for in-orbit robotic applications. Our method achieves state-of-the-art performance on the SPEED+ dataset and has won the SPEC2021 post-mortem competition.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.