亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The fifth-generation of wireless communication networks is required to support a range of use cases such as enhanced mobile broadband (eMBB), ultra-reliable, low-latency communications (URLLC), massive machine-type communications (mMTCs), with heterogeneous data rate, delay, and power requirements. The 4G LTE air interface uses extra overhead to enable scheduled access, which is not justified for small payload sizes. We employ a random access communication model with retransmissions for multiple users with small payloads at the low spectral efficiency regime. The radio resources are split non-orthogonally in the time and frequency dimensions. Retransmissions are combined via Hybrid Automatic Repeat reQuest (HARQ) methods, namely Chase Combining and Incremental Redundancy with a finite buffer size constraint $C_{\sf buf}$. We determine the best scaling for the spectral efficiency (SE) versus signal-to-noise ratio (SNR) per bit and for the user density versus SNR per bit, for the sum-optimal regime and when the interference is treated as noise, using a Shannon capacity approximation. Numerical results show that the scaling results are applicable over a range of $\eta$, $T$, $C_{\sf buf}$, $J$, at low received SNR values. The proposed analytical framework provides insights for resource allocation in general random access systems and specific 5G use cases for massive URLLC uplink access.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

Bundle Adjustment (BA) refers to the problem of simultaneous determination of sensor poses and scene geometry, which is a fundamental problem in robot vision. This paper presents an efficient and consistent bundle adjustment method for lidar sensors. The method employs edge and plane features to represent the scene geometry, and directly minimizes the natural Euclidean distance from each raw point to the respective geometry feature. A nice property of this formulation is that the geometry features can be analytically solved, drastically reducing the dimension of the numerical optimization. To represent and solve the resultant optimization problem more efficiently, this paper then proposes a novel concept {\it point clusters}, which encodes all raw points associated to the same feature by a compact set of parameters, the {\it point cluster coordinates}. We derive the closed-form derivatives, up to the second order, of the BA optimization based on the point cluster coordinates and show their theoretical properties such as the null spaces and sparsity. Based on these theoretical results, this paper develops an efficient second-order BA solver. Besides estimating the lidar poses, the solver also exploits the second order information to estimate the pose uncertainty caused by measurement noises, leading to consistent estimates of lidar poses. Moreover, thanks to the use of point cluster, the developed solver fundamentally avoids the enumeration of each raw point (which is very time-consuming due to the large number) in all steps of the optimization: cost evaluation, derivatives evaluation and uncertainty evaluation. The implementation of our method is open sourced to benefit the robotics community and beyond.

Sparse code multiple access (SCMA) is the most concerning scheme among non-orthogonal multiple access (NOMA) technologies for 5G wireless communication new interface. Another efficient technique in 5G aimed to improve spectral efficiency for local communications is device-to-device (D2D) communications. Therefore, we utilize the SCMA cellular network coexisting with D2D communications for the connection demand of the Internet of things (IOT), and improve the system sum rate performance of the hybrid network. We first derive the information-theoretic expression of the capacity for all users and find the capacity bound of cellular users based on the mutual interference between cellular users and D2D users. Then we consider the power optimization problem for the cellular users and D2D users jointly to maximize the system sum rate. To tackle the non-convex optimization problem, we propose a geometric programming (GP) based iterative power allocation algorithm. Simulation results demonstrate that the proposed algorithm converges fast and well improves the sum rate performance.

Conventional frequentist FL schemes are known to yield overconfident decisions. Bayesian FL addresses this issue by allowing agents to process and exchange uncertainty information encoded in distributions over the model parameters. However, this comes at the cost of a larger per-iteration communication overhead. This letter investigates whether Bayesian FL can still provide advantages in terms of calibration when constraining communication bandwidth. We present compressed particle-based Bayesian FL protocols for FL and federated "unlearning" that apply quantization and sparsification across multiple particles. The experimental results confirm that the benefits of Bayesian FL are robust to bandwidth constraints.

In data science, vector autoregression (VAR) models are popular in modeling multivariate time series in the environmental sciences and other applications. However, these models are computationally complex with the number of parameters scaling quadratically with the number of time series. In this work, we propose a so-called neighborhood vector autoregression (NVAR) model to efficiently analyze large-dimensional multivariate time series. We assume that the time series have underlying neighborhood relationships, e.g., spatial or network, among them based on the inherent setting of the problem. When this neighborhood information is available or can be summarized using a distance matrix, we demonstrate that our proposed NVAR method provides a computationally efficient and theoretically sound estimation of model parameters. The performance of the proposed method is compared with other existing approaches in both simulation studies and a real application of stream nitrogen study.

Various cryptographic techniques are used in outsourced database systems to ensure data privacy while allowing for efficient querying. This work proposes a definition and components of a new secure and efficient outsourced database system, which answers various types of queries, with different privacy guarantees in different security models. This work starts with the survey of five order-revealing encryption schemes that can be used directly in many database indices and five range query protocols with various security / efficiency tradeoffs. The survey systematizes the state-of-the-art range query solutions in a snapshot adversary setting and offers some non-obvious observations regarding the efficiency of the constructions. In $\mathcal{E}\text{psolute}$, a secure range query engine, security is achieved in a setting with a much stronger adversary where she can continuously observe everything on the server, and leaking even the result size can enable a reconstruction attack. $\mathcal{E}\text{psolute}$ proposes a definition, construction, analysis, and experimental evaluation of a system that provably hides both access pattern and communication volume while remaining efficient. The work concludes with $k\text{-a}n\text{o}n$ -- a secure similarity search engine in a snapshot adversary model. The work presents a construction in which the security of $k\text{NN}$ queries is achieved similarly to OPE / ORE solutions -- encrypting the input with an approximate Distance Comparison Preserving Encryption scheme so that the inputs, the points in a hyperspace, are perturbed, but the query algorithm still produces accurate results. We use TREC datasets and queries for the search, and track the rank quality metrics such as MRR and nDCG. For the attacks, we build an LSTM model that trains on the correlation between a sentence and its embedding and then predicts words from the embedding.

US wind power generation has grown significantly over the last decades, both in number and average size of operating turbines. A lower specific power, i.e. larger rotor blades relative to wind turbine capacities, allows to increase capacity factors and to reduce cost. However, this development also reduces system efficiency, i.e. the share of power in the wind flowing through rotor swept areas which is converted to electricity. At the same time, this may also decrease output power density, the amount of electric power generated per unit of rotor swept area. In this study, we present a decomposition of historical US wind power generation data for the period 2001--2021 to examine to which extent the decrease in specific power affected system efficiency and output power density. Furthermore, we decompose the wind power available to turbines into changes due to new locations and the effect of changes in average hub heights.

In this paper, we develop a novel class of linear energy-preserving integrating factor methods for the 2D nonlinear Schr\"odinger equation with wave operator (NLSW), combining the scalar auxiliary variable approach and the integrating factor methods. A second-order scheme is first proposed, which is rigorously proved to be energy-preserving. By using the energy methods, we analyze its optimal convergence in the $H^1$ norm without any restrictions on the grid ratio, where a novel technique and an improved induction argument are proposed to overcome the difficulty posed by the unavailability of a priori $L^\infty$ estimates of numerical solutions. Based on the integrating factor Runge-Kutta methods, we extend the proposed scheme to arbitrarily high order, which is also linear and conservative. Numerical experiments are presented to confirm the theoretical analysis and demonstrate the advantages of the proposed methods.

Compute-in-memory (CiM) is a promising approach to improving the computing speed and energy efficiency in dataintensive applications. Beyond existing CiM techniques of bitwise logic-in-memory operations and dot product operations, this paper extends the CiM paradigm with FAST, a new shift-based inmemory computation technique to handle high-concurrency operations on multiple rows in an SRAM. Such high-concurrency operations are widely seen in both conventional applications (e.g. the table update in a database), and emerging applications (e.g. the parallel weight update in neural network accelerators), in which low latency and low energy consumption are critical. The proposed shift-based CiM architecture is enabled by integrating the shifter function into each SRAM cell, and by creating a datapath that exploits the high-parallelism of shifting operations in multiple rows in the array. A 128-row 16-column shiftable SRAM in 65nm CMOS is designed to evaluate the proposed architecture. Postlayout SPICE simulations show average improvements of 4.4x energy efficiency and 96.0x speed over a conventional fully-digital memory-computing-separated scheme, when performing the 8-bit weight update task in a VGG-7 framework.

We consider the stochastic gradient descent (SGD) algorithm driven by a general stochastic sequence, including i.i.d noise and random walk on an arbitrary graph, among others; and analyze it in the asymptotic sense. Specifically, we employ the notion of `efficiency ordering', a well-analyzed tool for comparing the performance of Markov Chain Monte Carlo (MCMC) samplers, for SGD algorithms in the form of Loewner ordering of covariance matrices associated with the scaled iterate errors in the long term. Using this ordering, we show that input sequences that are more efficient for MCMC sampling also lead to smaller covariance of the errors for SGD algorithms in the limit. This also suggests that an arbitrarily weighted MSE of SGD iterates in the limit becomes smaller when driven by more efficient chains. Our finding is of particular interest in applications such as decentralized optimization and swarm learning, where SGD is implemented in a random walk fashion on the underlying communication graph for cost issues and/or data privacy. We demonstrate how certain non-Markovian processes, for which typical mixing-time based non-asymptotic bounds are intractable, can outperform their Markovian counterparts in the sense of efficiency ordering for SGD. We show the utility of our method by applying it to gradient descent with shuffling and mini-batch gradient descent, reaffirming key results from existing literature under a unified framework. Empirically, we also observe efficiency ordering for variants of SGD such as accelerated SGD and Adam, open up the possibility of extending our notion of efficiency ordering to a broader family of stochastic optimization algorithms.

We introduce two new tools to assess the validity of statistical distributions. These tools are based on components derived from a new statistical quantity, the $comparison$ $curve$. The first tool is a graphical representation of these components on a $bar$ $plot$ (B plot), which can provide a detailed appraisal of the validity of the statistical model, in particular when supplemented by acceptance regions related to the model. The knowledge gained from this representation can sometimes suggest an existing $goodness$-$of$-$fit$ test to supplement this visual assessment with a control of the type I error. Otherwise, an adaptive test may be preferable and the second tool is the combination of these components to produce a powerful $\chi^2$-type goodness-of-fit test. Because the number of these components can be large, we introduce a new selection rule to decide, in a data driven fashion, on their proper number to take into consideration. In a simulation, our goodness-of-fit tests are seen to be powerwise competitive with the best solutions that have been recommended in the context of a fully specified model as well as when some parameters must be estimated. Practical examples show how to use these tools to derive principled information about where the model departs from the data.

北京阿比特科技有限公司