We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an "aware" state when stimuli are present and an "unaware" state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize using only local interactions, such that if the food remains in position long enough, the agents transition to a gather phase, collectively forming a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should self-induce a switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source triggers these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response.
Recurrent Neural Networks (RNNs) have shown great success in modeling time-dependent patterns, but there is limited research on their learned representations of latent temporal features and the emergence of these representations during training. To address this gap, we use timed automata (TA) to introduce a family of supervised learning tasks modeling behavior dependent on hidden temporal variables whose complexity is directly controllable. Building upon past studies from the perspective of dynamical systems, we train RNNs to emulate temporal flipflops, a new collection of TA that emphasizes the need for time-awareness over long-term memory. We find that these RNNs learn in phases: they quickly perfect any time-independent behavior, but they initially struggle to discover the hidden time-dependent features. In the case of periodic "time-of-day" aware automata, we show that the RNNs learn to switch between periodic orbits that encode time modulo the period of the transition rules. We subsequently apply fixed point stability analysis to monitor changes in the RNN dynamics during training, and we observe that the learning phases are separated by a bifurcation from which the periodic behavior emerges. In this way, we demonstrate how dynamical systems theory can provide insights into not only the learned representations of these models, but also the dynamics of the learning process itself. We argue that this style of analysis may provide insights into the training pathologies of recurrent architectures in contexts outside of time-awareness.
The essential ingredient for studying the phenomena of emergence is the ability to generate and manipulate emergent systems that span large scales. Cellular automata are the model class particularly known for their effective scalability but are also typically constrained by fixed local rules. In this paper, we propose a new model class of adaptive cellular automata that allows for the generation of scalable and expressive models. We show how to implement computation-effective adaptation by coupling the update rule of the cellular automaton with itself and the system state in a localized way. To demonstrate the applications of this approach, we implement two different emergent models: a self-organizing Ising model and two types of plastic neural networks, a rate and spiking model. With the Ising model, we show how coupling local/global temperatures to local/global measurements can tune the model to stay in the vicinity of the critical temperature. With the neural models, we reproduce a classical balanced state in large recurrent neuronal networks with excitatory and inhibitory neurons and various plasticity mechanisms. Our study opens multiple directions for studying collective behavior and emergence.
We consider a general online resource allocation model with bandit feedback and time-varying demands. While online resource allocation has been well studied in the literature, most existing works make the strong assumption that the demand arrival process is stationary. In practical applications, such as online advertisement and revenue management, however, this process may be exogenous and non-stationary, like the constantly changing internet traffic. Motivated by the recent Online Algorithms with Advice framework [Mitazenmacher and Vassilvitskii, \emph{Commun. ACM} 2022], we explore how online advice can inform policy design. We establish an impossibility result that any algorithm perform poorly in terms of regret without any advice in our setting. In contrast, we design an robust online algorithm that leverages the online predictions on the total demand volumes. Empowered with online advice, our proposed algorithm is shown to have both theoretical performance and promising numerical results compared with other algorithms in literature. We also provide two explicit examples for the time-varying demand scenarios and derive corresponding theoretical performance guarantees. Finally, we adapt our model to a network revenue management problem, and numerically demonstrate that our algorithm can still performs competitively compared to existing baselines.
Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles to assist them in passing through intersections during green intervals, thus reducing traffic congestion and fuel consumption by minimizing the number of stops and idle times at intersections. However, previous research has focused on optimizing the GLOSA algorithm, neglecting the frequency of speed advisory by the GLOSA system. Specifically, some studies provide speed advisory profile at each decision step, resulting in redundant advisory, while others calculate the optimal speed for the vehicle only once, which cannot adapt to dynamic traffic. In this paper, we propose an Adaptive Frequency GLOSA (AF-GLOSA) model based on Hybrid Proximal Policy Optimization (H-PPO) method, which employs an actor-critic architecture with a hybrid actor network. The hybrid actor network consists of a discrete actor that outputs control gap and a continuous actor that outputs acceleration profiles. Additionally, we design a novel reward function that considers both travel efficiency and fuel consumption. The AF-GLOSA model is evaluated in comparison to traditional GLOSA and learning-based GLOSA methods in a three-lane intersection with a traffic signal in SUMO. The results demonstrate that the AF-GLOSA model performs best in reducing average stop times, fuel consumption and CO2 emissions.
Deep Neural Networks (DNNs) have demonstrated impressive performance across a wide range of tasks. However, deploying DNNs on edge devices poses significant challenges due to stringent power and computational budgets. An effective solution to this issue is software-hardware (SW-HW) co-design, which allows for the tailored creation of DNN models and hardware architectures that optimally utilize available resources. However, SW-HW co-design traditionally suffers from slow optimization speeds because their optimizers do not make use of heuristic knowledge, also known as the ``cold start'' problem. In this study, we present a novel approach that leverages Large Language Models (LLMs) to address this issue. By utilizing the abundant knowledge of pre-trained LLMs in the co-design optimization process, we effectively bypass the cold start problem, substantially accelerating the design process. The proposed method achieves a significant speedup of 25x. This advancement paves the way for the rapid and efficient deployment of DNNs on edge devices.
In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using general geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.
Recent deep learning models have attracted substantial attention in infant brain analysis. These models have performed state-of-the-art performance, such as semi-supervised techniques (e.g., Temporal Ensembling, mean teacher). However, these models depend on an encoder-decoder structure with stacked local operators to gather long-range information, and the local operators limit the efficiency and effectiveness. Besides, the $MRI$ data contain different tissue properties ($TPs$) such as $T1$ and $T2$. One major limitation of these models is that they use both data as inputs to the segment process, i.e., the models are trained on the dataset once, and it requires much computational and memory requirements during inference. In this work, we address the above limitations by designing a new deep-learning model, called 3D-DenseUNet, which works as adaptable global aggregation blocks in down-sampling to solve the issue of spatial information loss. The self-attention module connects the down-sampling blocks to up-sampling blocks, and integrates the feature maps in three dimensions of spatial and channel, effectively improving the representation potential and discriminating ability of the model. Additionally, we propose a new method called Two Independent Teachers ($2IT$), that summarizes the model weights instead of label predictions. Each teacher model is trained on different types of brain data, $T1$ and $T2$, respectively. Then, a fuse model is added to improve test accuracy and enable training with fewer parameters and labels compared to the Temporal Ensembling method without modifying the network architecture. Empirical results demonstrate the effectiveness of the proposed method.
Biological nervous systems consist of networks of diverse, sophisticated information processors in the form of neurons of different classes. In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons within a layer or even the whole network; training of ANNs focuses on synaptic optimization. In this paper, we propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations. Demonstrating the promise of the approach, we show that evolving neural parameters alone allows agents to solve various reinforcement learning tasks without optimizing any synaptic weights. While not aiming to be an accurate biological model, parameterizing neurons to a larger degree than the current common practice, allows us to ask questions about the computational abilities afforded by neural diversity in random neural networks. The presented results open up interesting future research directions, such as combining evolved neural diversity with activity-dependent plasticity.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.