Adversarial evaluations of language models typically focus on English alone. In this paper, we performed a multilingual evaluation of Named Entity Recognition (NER) in terms of its robustness to small perturbations in the input. Our results showed the NER models we explored across three languages (English, German and Hindi) are not very robust to such changes, as indicated by the fluctuations in the overall F1 score as well as in a more fine-grained evaluation. With that knowledge, we further explored whether it is possible to improve the existing NER models using a part of the generated adversarial data sets as augmented training data to train a new NER model or as fine-tuning data to adapt an existing NER model. Our results showed that both these approaches improve performance on the original as well as adversarial test sets. While there is no significant difference between the two approaches for English, re-training is significantly better than fine-tuning for German and Hindi.
Zero-cost proxies are nowadays frequently studied and used to search for neural architectures. They show an impressive ability to predict the performance of architectures by making use of their untrained weights. These techniques allow for immense search speed-ups. So far the joint search for well-performing and robust architectures has received much less attention in the field of NAS. Therefore, the main focus of zero-cost proxies is the clean accuracy of architectures, whereas the model robustness should play an evenly important part. In this paper, we analyze the ability of common zero-cost proxies to serve as performance predictors for robustness in the popular NAS-Bench-201 search space. We are interested in the single prediction task for robustness and the joint multi-objective of clean and robust accuracy. We further analyze the feature importance of the proxies and show that predicting the robustness makes the prediction task from existing zero-cost proxies more challenging. As a result, the joint consideration of several proxies becomes necessary to predict a model's robustness while the clean accuracy can be regressed from a single such feature.
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.
Split learning enables collaborative deep learning model training while preserving data privacy and model security by avoiding direct sharing of raw data and model details (i.e., sever and clients only hold partial sub-networks and exchange intermediate computations). However, existing research has mainly focused on examining its reliability for privacy protection, with little investigation into model security. Specifically, by exploring full models, attackers can launch adversarial attacks, and split learning can mitigate this severe threat by only disclosing part of models to untrusted servers.This paper aims to evaluate the robustness of split learning against adversarial attacks, particularly in the most challenging setting where untrusted servers only have access to the intermediate layers of the model.Existing adversarial attacks mostly focus on the centralized setting instead of the collaborative setting, thus, to better evaluate the robustness of split learning, we develop a tailored attack called SPADV, which comprises two stages: 1) shadow model training that addresses the issue of lacking part of the model and 2) local adversarial attack that produces adversarial examples to evaluate.The first stage only requires a few unlabeled non-IID data, and, in the second stage, SPADV perturbs the intermediate output of natural samples to craft the adversarial ones. The overall cost of the proposed attack process is relatively low, yet the empirical attack effectiveness is significantly high, demonstrating the surprising vulnerability of split learning to adversarial attacks.
A practical text-to-SQL system should generalize well on a wide variety of natural language questions, unseen database schemas, and novel SQL query structures. To comprehensively evaluate text-to-SQL systems, we introduce a UNIfied benchmark for Text-to-SQL Evaluation (UNITE). It is composed of publicly available text-to-SQL datasets, containing natural language questions from more than 12 domains, SQL queries from more than 3.9K patterns, and 29K databases. Compared to the widely used Spider benchmark, we introduce $\sim$120K additional examples and a threefold increase in SQL patterns, such as comparative and boolean questions. We conduct a systematic study of six state-of-the-art (SOTA) text-to-SQL parsers on our new benchmark and show that: 1) Codex performs surprisingly well on out-of-domain datasets; 2) specially designed decoding methods (e.g. constrained beam search) can improve performance for both in-domain and out-of-domain settings; 3) explicitly modeling the relationship between questions and schemas further improves the Seq2Seq models. More importantly, our benchmark presents key challenges towards compositional generalization and robustness issues -- which these SOTA models cannot address well. Our code and data processing script are available at //github.com/awslabs/unified-text2sql-benchmark
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.