In this paper, we address the problem of sim-to-real transfer for object segmentation when there is no access to real examples of an object of interest during training, i.e. zero-shot sim-to-real transfer for segmentation. We focus on the application of shipwreck segmentation in side scan sonar imagery. Our novel segmentation network, STARS, addresses this challenge by fusing a predicted deformation field and anomaly volume, allowing it to generalize better to real sonar images and achieve more effective zero-shot sim-to-real transfer for image segmentation. We evaluate the sim-to-real transfer capabilities of our method on a real, expert-labeled side scan sonar dataset of shipwrecks collected from field work surveys with an autonomous underwater vehicle (AUV). STARS is trained entirely in simulation and performs zero-shot shipwreck segmentation with no additional fine-tuning on real data. Our method provides a significant 20% increase in segmentation performance for the targeted shipwreck class compared to the best baseline.
In this paper, we introduce the FOCAL (Ford-OLIVES Collaboration on Active Learning) dataset which enables the study of the impact of annotation-cost within a video active learning setting. Annotation-cost refers to the time it takes an annotator to label and quality-assure a given video sequence. A practical motivation for active learning research is to minimize annotation-cost by selectively labeling informative samples that will maximize performance within a given budget constraint. However, previous work in video active learning lacks real-time annotation labels for accurately assessing cost minimization and instead operates under the assumption that annotation-cost scales linearly with the amount of data to annotate. This assumption does not take into account a variety of real-world confounding factors that contribute to a nonlinear cost such as the effect of an assistive labeling tool and the variety of interactions within a scene such as occluded objects, weather, and motion of objects. FOCAL addresses this discrepancy by providing real annotation-cost labels for 126 video sequences across 69 unique city scenes with a variety of weather, lighting, and seasonal conditions. We also introduce a set of conformal active learning algorithms that take advantage of the sequential structure of video data in order to achieve a better trade-off between annotation-cost and performance while also reducing floating point operations (FLOPS) overhead by at least 77.67%. We show how these approaches better reflect how annotations on videos are done in practice through a sequence selection framework. We further demonstrate the advantage of these approaches by introducing two performance-cost metrics and show that the best conformal active learning method is cheaper than the best traditional active learning method by 113 hours.
In this paper, we propose a deep generative time series approach using latent temporal processes for modeling and holistically analyzing complex disease trajectories. We aim to find meaningful temporal latent representations of an underlying generative process that explain the observed disease trajectories in an interpretable and comprehensive way. To enhance the interpretability of these latent temporal processes, we develop a semi-supervised approach for disentangling the latent space using established medical concepts. By combining the generative approach with medical knowledge, we leverage the ability to discover novel aspects of the disease while integrating medical concepts into the model. We show that the learned temporal latent processes can be utilized for further data analysis and clinical hypothesis testing, including finding similar patients and clustering the disease into new sub-types. Moreover, our method enables personalized online monitoring and prediction of multivariate time series including uncertainty quantification. We demonstrate the effectiveness of our approach in modeling systemic sclerosis, showcasing the potential of our machine learning model to capture complex disease trajectories and acquire new medical knowledge.
Despite the progress we have recorded in scaling multilingual machine translation (MT) models and evaluation data to several under-resourced African languages, it is difficult to measure accurately the progress we have made on these languages because evaluation is often performed on n-gram matching metrics like BLEU that often have worse correlation with human judgments. Embedding-based metrics such as COMET correlate better; however, lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with a simplified MQM guideline for error-span annotation and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET, a COMET evaluation metric for African languages by leveraging DA training data from high-resource languages and African-centric multilingual encoder (AfroXLM-Roberta) to create the state-of-the-art evaluation metric for African languages MT with respect to Spearman-rank correlation with human judgments (+0.406).
In this paper, we design an efficient, multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation (AITV). The segmentation framework generally consists of two stages: smoothing and thresholding, thus referred to as SaT. In the first stage, a smoothed image is obtained by an AITV-regularized Mumford-Shah (MS) model, which can be solved efficiently by the alternating direction method of multipliers (ADMM) with a closed-form solution of a proximal operator of the $\ell_1 -\alpha \ell_2$ regularizer. Convergence of the ADMM algorithm is analyzed. In the second stage, we threshold the smoothed image by $K$-means clustering to obtain the final segmentation result. Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images, efficient in producing high-quality segmentation results within a few seconds, and robust to input images that are corrupted with noise, blur, or both. We compare the AITV method with its original convex TV and nonconvex TV$^p (0<p<1)$ counterparts, showcasing the qualitative and quantitative advantages of our proposed method.
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we develop a benchmark composed of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. Alongside the benchmark, we present an extraction method based on instruction-tuned LLMs. Our approach shows competitive performance without task-specific labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining great cost efficiency. Moreover, we validate the possibility of distilling compact table-extraction models to reduce API reliance, as well as extraction from image tables using multi-modal models. By developing a benchmark and demonstrating the feasibility of this task using proprietary models, we aim to support future work on open-source schema-driven IE models.
In this paper, we study the computation of the rate-distortion-perception function (RDPF) for a multivariate Gaussian source under mean squared error (MSE) distortion and, respectively, Kullback-Leibler divergence, geometric Jensen-Shannon divergence, squared Hellinger distance, and squared Wasserstein-2 distance perception metrics. To this end, we first characterize the analytical bounds of the scalar Gaussian RDPF for the aforementioned divergence functions, also providing the RDPF-achieving forward "test-channel" realization. Focusing on the multivariate case, we establish that, for tensorizable distortion and perception metrics, the optimal solution resides on the vector space spanned by the eigenvector of the source covariance matrix. Consequently, the multivariate optimization problem can be expressed as a function of the scalar Gaussian RDPFs of the source marginals, constrained by global distortion and perception levels. Leveraging this characterization, we design an alternating minimization scheme based on the block nonlinear Gauss-Seidel method, which optimally solves the problem while identifying the Gaussian RDPF-achieving realization. Furthermore, the associated algorithmic embodiment is provided, as well as the convergence and the rate of convergence characterization. Lastly, for the "perfect realism" regime, the analytical solution for the multivariate Gaussian RDPF is obtained. We corroborate our results with numerical simulations and draw connections to existing results.
In this paper, we address the concept of "alignment" in large language models (LLMs) through the lens of post-structuralist socio-political theory, specifically examining its parallels to empty signifiers. To establish a shared vocabulary around how abstract concepts of alignment are operationalised in empirical datasets, we propose a framework that demarcates: 1) which dimensions of model behaviour are considered important, then 2) how meanings and definitions are ascribed to these dimensions, and by whom. We situate existing empirical literature and provide guidance on deciding which paradigm to follow. Through this framework, we aim to foster a culture of transparency and critical evaluation, aiding the community in navigating the complexities of aligning LLMs with human populations.
In this paper, we investigate the issue of satellite-terrestrial computing in the sixth generation (6G) wireless networks, where multiple terrestrial base stations (BSs) and low earth orbit (LEO) satellites collaboratively provide edge computing services to ground user equipments (GUEs) and space user equipments (SUEs) over the world. In particular, we design a complete process of satellite-terrestrial computing in terms of communication and computing according to the characteristics of 6G wireless networks. In order to minimize the weighted total energy consumption while ensuring delay requirements of computing tasks, an energy-efficient satellite-terrestrial computing algorithm is put forward by jointly optimizing offloading selection, beamforming design and resource allocation. Finally, both theoretical analysis and simulation results confirm fast convergence and superior performance of the proposed algorithm for satellite-terrestrial computing in 6G wireless networks.
In this paper, we address the problem of dynamic network embedding, that is, representing the nodes of a dynamic network as evolving vectors within a low-dimensional space. While the field of static network embedding is wide and established, the field of dynamic network embedding is comparatively in its infancy. We propose that a wide class of established static network embedding methods can be used to produce interpretable and powerful dynamic network embeddings when they are applied to the dilated unfolded adjacency matrix. We provide a theoretical guarantee that, regardless of embedding dimension, these unfolded methods will produce stable embeddings, meaning that nodes with identical latent behaviour will be exchangeable, regardless of their position in time or space. We additionally define a hypothesis testing framework which can be used to evaluate the quality of a dynamic network embedding by testing for planted structure in simulated networks. Using this, we demonstrate that, even in trivial cases, unstable methods are often either conservative or encode incorrect structure. In contrast, we demonstrate that our suite of stable unfolded methods are not only more interpretable but also more powerful in comparison to their unstable counterparts.
In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .