In this paper, we propose a deep generative time series approach using latent temporal processes for modeling and holistically analyzing complex disease trajectories. We aim to find meaningful temporal latent representations of an underlying generative process that explain the observed disease trajectories in an interpretable and comprehensive way. To enhance the interpretability of these latent temporal processes, we develop a semi-supervised approach for disentangling the latent space using established medical concepts. By combining the generative approach with medical knowledge, we leverage the ability to discover novel aspects of the disease while integrating medical concepts into the model. We show that the learned temporal latent processes can be utilized for further data analysis and clinical hypothesis testing, including finding similar patients and clustering the disease into new sub-types. Moreover, our method enables personalized online monitoring and prediction of multivariate time series including uncertainty quantification. We demonstrate the effectiveness of our approach in modeling systemic sclerosis, showcasing the potential of our machine learning model to capture complex disease trajectories and acquire new medical knowledge.
In this paper, we present a novel two-stage approach that fully utilizes the information provided by the reference image to establish a customized knowledge prior for image-to-3D generation. While previous approaches primarily rely on a general diffusion prior, which struggles to yield consistent results with the reference image, we propose a subject-specific and multi-modal diffusion model. This model not only aids NeRF optimization by considering the shading mode for improved geometry but also enhances texture from the coarse results to achieve superior refinement. Both aspects contribute to faithfully aligning the 3D content with the subject. Extensive experiments showcase the superiority of our method, Customize-It-3D, outperforming previous works by a substantial margin. It produces faithful 360-degree reconstructions with impressive visual quality, making it well-suited for various applications, including text-to-3D creation.
In this paper, we propose a method for class-incremental learning of potentially overlapping sounds for solving a sequence of multi-label audio classification tasks. We design an incremental learner that learns new classes independently of the old classes. To preserve knowledge about the old classes, we propose a cosine similarity-based distillation loss that minimizes discrepancy in the feature representations of subsequent learners, and use it along with a Kullback-Leibler divergence-based distillation loss that minimizes discrepancy in their respective outputs. Experiments are performed on a dataset with 50 sound classes, with an initial classification task containing 30 base classes and 4 incremental phases of 5 classes each. After each phase, the system is tested for multi-label classification with the entire set of classes learned so far. The proposed method obtains an average F1-score of 40.9% over the five phases, ranging from 45.2% in phase 0 on 30 classes, to 36.3% in phase 4 on 50 classes. Average performance degradation over incremental phases is only 0.7 percentage points from the initial F1-score of 45.2%.
In this paper, we first extend the result of FL93 and prove universal consistency for a classification rule based on wide and deep ReLU neural networks trained on the logistic loss. Unlike the approach in FL93 that decomposes the estimation and empirical error, we directly analyze the classification risk based on the observation that a realization of a neural network that is wide enough is capable of interpolating an arbitrary number of points. Secondly, we give sufficient conditions for a class of probability measures under which classifiers based on neural networks achieve minimax optimal rates of convergence. Our result is motivated from the practitioner's observation that neural networks are often trained to achieve 0 training error, which is the case for our proposed neural network classifiers. Our proofs hinge on recent developments in empirical risk minimization and on approximation rates of deep ReLU neural networks for various function classes of interest. Applications to classical function spaces of smoothness illustrate the usefulness of our result.
To resolve the semantic ambiguity in texts, we propose a model, which innovatively combines a knowledge graph with an improved attention mechanism. An existing knowledge base is utilized to enrich the text with relevant contextual concepts. The model operates at both character and word levels to deepen its understanding by integrating the concepts. We first adopt information gain to select import words. Then an encoder-decoder framework is used to encode the text along with the related concepts. The local attention mechanism adjusts the weight of each concept, reducing the influence of irrelevant or noisy concepts during classification. We improve the calculation formula for attention scores in the local self-attention mechanism, ensuring that words with different frequencies of occurrence in the text receive higher attention scores. Finally, the model employs a Bi-directional Gated Recurrent Unit (Bi-GRU), which is effective in feature extraction from texts for improved classification accuracy. Its performance is demonstrated on datasets such as AGNews, Ohsumed, and TagMyNews, achieving accuracy of 75.1%, 58.7%, and 68.5% respectively, showing its effectiveness in classifying tasks.
In this paper, we explore a continuous modeling approach for deep-learning-based speech enhancement, focusing on the denoising process. We use a state variable to indicate the denoising process. The starting state is noisy speech and the ending state is clean speech. The noise component in the state variable decreases with the change of the state index until the noise component is 0. During training, a UNet-like neural network learns to estimate every state variable sampled from the continuous denoising process. In testing, we introduce a controlling factor as an embedding, ranging from zero to one, to the neural network, allowing us to control the level of noise reduction. This approach enables controllable speech enhancement and is adaptable to various application scenarios. Experimental results indicate that preserving a small amount of noise in the clean target benefits speech enhancement, as evidenced by improvements in both objective speech measures and automatic speech recognition performance.
In this paper, we study underlay device-to-device (D2D) communication systems empowered by a reconfigurable intelligent surface (RIS) for cognitive cellular networks. Considering Rayleigh fading channels and the general case where there exist both the direct and RIS-enabled D2D channels, the outage probability (OP) of the D2D communication link is presented in closed-form. Next, for the considered RIS-empowered underlaid D2D system, we frame an OP minimization problem. We target the joint optimization of the transmit power at the D2D source and the RIS placement, under constraints on the transmit power at the D2D source and on the limited interference imposed on the cellular user for two RIS deployment topologies. Due to the coupled optimization variables, the formulated optimization problem is extremely intractable. We propose an equivalent transformation which we are able to solve analytically. In the transformed problem, an expression for the average value of the signal-to-interference-noise ratio (SINR) at the D2D receiver is derived in closed-form. Our theoretical derivations are corroborated through simulation results, and various system design insights are deduced. It is indicatively showcased that the proposed RIS-empowered underlaid D2D system design outperforms the benchmark semi-adaptive optimal power and optimal distance schemes, offering $44\%$ and $20\%$ performance improvement, respectively.
In this paper, we present a statistical beamforming algorithm as a pre-processing step for robust automatic speech recognition (ASR). By modeling the target speech as a non-stationary Laplacian distribution, a mask-based statistical beamforming algorithm is proposed to exploit both its output and masked input variance for robust estimation of the beamformer. In addition, we also present a method for steering vector estimation (SVE) based on a noise power ratio obtained from the target and noise outputs in independent component analysis (ICA). To update the beamformer in the same ICA framework, we derive ICA with distortionless and null constraints on target speech, which yields beamformed speech at the target output and noises at the other outputs, respectively. The demixing weights for the target output result in a statistical beamformer with the weighted spatial covariance matrix (wSCM) using a weighting function characterized by a source model. To enhance the SVE, the strict null constraints imposed by the Lagrange multiplier methods are relaxed by generalized penalties with weight parameters, while the strict distortionless constraints are maintained. Furthermore, we derive an online algorithm based on an optimization technique of recursive least squares (RLS) for practical applications. Experimental results on various environments using CHiME-4 and LibriCSS datasets demonstrate the effectiveness of the presented algorithm compared to conventional beamforming and blind source extraction (BSE) based on ICA on both batch and online processing.
In real life, we frequently come across data sets that involve some independent explanatory variable(s) generating a set of ordinal responses. These ordinal responses may correspond to an underlying continuous latent variable, which is linearly related to the covariate(s), and takes a particular (ordinal) label depending on whether this latent variable takes value in some suitable interval specified by a pair of (unknown) cut-offs. The most efficient way of estimating the unknown parameters (i.e., the regression coefficients and the cut-offs) is the method of maximum likelihood (ML). However, contamination in the data set either in the form of misspecification of ordinal responses, or the unboundedness of the covariate(s), might destabilize the likelihood function to a great extent where the ML based methodology might lead to completely unreliable inferences. In this paper, we explore a minimum distance estimation procedure based on the popular density power divergence (DPD) to yield robust parameter estimates for the ordinal response model. This paper highlights how the resulting estimator, namely the minimum DPD estimator (MDPDE), can be used as a practical robust alternative to the classical procedures based on the ML. We rigorously develop several theoretical properties of this estimator, and provide extensive simulations to substantiate the theory developed.
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.