亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A matching $M$ in a graph $G$ is an \emph{acyclic matching} if the subgraph of $G$ induced by the endpoints of the edges of $M$ is a forest. Given a graph $G$ and a positive integer $\ell$, Acyclic Matching asks whether $G$ has an acyclic matching of size (i.e., the number of edges) at least $\ell$. In this paper, we first prove that assuming $\mathsf{W[1]\nsubseteq FPT}$, there does not exist any $\mathsf{FPT}$-approximation algorithm for Acyclic Matching that approximates it within a constant factor when the parameter is the size of the matching. Our reduction is general in the sense that it also asserts $\mathsf{FPT}$-inapproximability for Induced Matching and Uniquely Restricted Matching as well. We also consider three below-guarantee parameters for Acyclic Matching, viz. $\frac{n}{2}-\ell$, $\mathsf{MM(G)}-\ell$, and $\mathsf{IS(G)}-\ell$, where $n$ is the number of vertices in $G$, $\mathsf{MM(G)}$ is the matching number of $G$, and $\mathsf{IS(G)}$ is the independence number of $G$. Furthermore, we show that Acyclic Matching does not exhibit a polynomial kernel with respect to vertex cover number (or vertex deletion distance to clique) plus the size of the matching unless $\mathsf{NP}\subseteq\mathsf{coNP}\slash\mathsf{poly}$.

相關內容

FPT:International Conference on Field-Programmable Technology。 Explanation:現場可(ke)編程技術國際會議。 Publisher:IEEE。 SIT:

Given a rectangle $R$ with area $A$ and a set of areas $L=\{A_1,...,A_n\}$ with $\sum_{i=1}^n A_i = A$, we consider the problem of partitioning $R$ into $n$ sub-regions $R_1,...,R_n$ with areas $A_1,...,A_n$ in a way that the total perimeter of all sub-regions is minimized. The goal is to create square-like sub-regions, which are often more desired. We propose an efficient $1.203$--approximation algorithm for this problem based on a divide and conquer scheme that runs in $\mathcal{O}(n^2)$ time. For the special case when the aspect ratios of all rectangles are bounded from above by 3, the approximation factor is $2/\sqrt{3} \leq 1.1548$. We also present a modified version of out algorithm as a heuristic that achieves better average and best run times.

We study the emptiness and $\lambda$-reachability problems for unary and binary Probabilistic Finite Automata (PFA) and characterise the complexity of these problems in terms of the degree of ambiguity of the automaton and the size of its alphabet. Our main result is that emptiness and $\lambda$-reachability are solvable in EXPTIME for polynomially ambiguous unary PFA and if, in addition, the transition matrix is binary, we show they are in NP. In contrast to the Skolem-hardness of the $\lambda$-reachability and emptiness problems for exponentially ambiguous unary PFA, we show that these problems are NP-hard even for finitely ambiguous unary PFA. For binary polynomially ambiguous PFA with fixed and commuting transition matrices, we prove NP-hardness of the $\lambda$-reachability (dimension 9), nonstrict emptiness (dimension 37) and strict emptiness (dimension 40) problems.

Given $k$ input graphs $G_1, \dots ,G_k$, where each pair $G_i$, $G_j$ with $i \neq j$ shares the same graph $G$, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on $G$. While SEFE is still open for the case of two input graphs, the problem is NP-complete for $k \geq 3$ [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to $k$ plus the vertex cover number or the feedback edge set number of the the union graph $G^\cup = G_1 \cup \dots \cup G_k$. Regarding the shared graph $G$, we show that SEFE is NP-complete, even if $G$ is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of $G$, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.

We investigate the decidability of the ${0,\infty}$ fragment of Timed Propositional Temporal Logic (TPTL). We show that the satisfiability checking of TPTL$^{0,\infty}$ is PSPACE-complete. Moreover, even its 1-variable fragment (1-TPTL$^{0,\infty}$) is strictly more expressive than Metric Interval Temporal Logic (MITL) for which satisfiability checking is EXPSPACE complete. Hence, we have a strictly more expressive logic with computationally easier satisfiability checking. To the best of our knowledge, TPTL$^{0,\infty}$ is the first multi-variable fragment of TPTL for which satisfiability checking is decidable without imposing any bounds/restrictions on the timed words (e.g. bounded variability, bounded time, etc.). The membership in PSPACE is obtained by a reduction to the emptiness checking problem for a new "non-punctual" subclass of Alternating Timed Automata with multiple clocks called Unilateral Very Weak Alternating Timed Automata (VWATA$^{0,\infty}$) which we prove to be in PSPACE. We show this by constructing a simulation equivalent non-deterministic timed automata whose number of clocks is polynomial in the size of the given VWATA$^{0,\infty}$.

Given a straight-line drawing of a graph, a {\em segment} is a maximal set of edges that form a line segment. Given a planar graph $G$, the {\em segment number} of $G$ is the minimum number of segments that can be achieved by any planar straight-line drawing of $G$. The {\em line cover number} of $G$ is the minimum number of lines that support all the edges of a planar straight-line drawing of $G$. Computing the segment number or the line cover number of a planar graph is $\exists\mathbb{R}$-complete and, thus, NP-hard. We study the problem of computing the segment number from the perspective of parameterized complexity. We show that this problem is fixed-parameter tractable with respect to each of the following parameters: the vertex cover number, the segment number, and the line cover number. We also consider colored versions of the segment and the line cover number.

We provide a framework to prove convergence rates for discretizations of kinetic Langevin dynamics for $M$-$\nabla$Lipschitz $m$-log-concave densities. Our approach provides convergence rates of $\mathcal{O}(m/M)$, with explicit stepsize restrictions, which are of the same order as the stability threshold for Gaussian targets and are valid for a large interval of the friction parameter. We apply this methodology to various integration methods which are popular in the molecular dynamics and machine learning communities. Finally we introduce the property ``$\gamma$-limit convergent" (GLC) to characterise underdamped Langevin schemes that converge to overdamped dynamics in the high friction limit and which have stepsize restrictions that are independent of the friction parameter; we show that this property is not generic by exhibiting methods from both the class and its complement.

Standard mixed-integer programming formulations for the stable set problem on $n$-node graphs require $n$ integer variables. We prove that this is almost optimal: We give a family of $n$-node graphs for which every polynomial-size MIP formulation requires $\Omega(n/\log^2 n)$ integer variables. By a polyhedral reduction we obtain an analogous result for $n$-item knapsack problems. In both cases, this improves the previously known bounds of $\Omega(\sqrt{n}/\log n)$ by Cevallos, Weltge & Zenklusen (SODA 2018). To this end, we show that there exists a family of $n$-node graphs whose stable set polytopes satisfy the following: any $(1+\varepsilon/n)$-approximate extended formulation for these polytopes, for some constant $\varepsilon > 0$, has size $2^{\Omega(n/\log n)}$. Our proof extends and simplifies the information-theoretic methods due to G\"o\"os, Jain & Watson (FOCS 2016, SIAM J. Comput. 2018) who showed the same result for the case of exact extended formulations (i.e. $\varepsilon = 0$).

Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario, where a detection model is required to be capable of detecting both known and unknown objects and incrementally learning newly introduced knowledge. Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns, whose performance relies heavily on the supervision of known objects. While they can detect the unknowns that exhibit similar features to the known objects, they suffer from a severe label bias problem that they tend to detect all regions (including unknown object regions) that are dissimilar to the known objects as part of the background. To eliminate the label bias, this paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects from raw pseudo labels generated by unsupervised region proposal methods. The resulting model can be further refined by a classification-free self-training method which iteratively extends pseudo unknown objects to the unlabeled regions. Experimental results show that our method 1) significantly outperforms the prior SOTA in detecting unknown objects while maintaining competitive performance of detecting known object classes on the MS COCO dataset, and 2) achieves better generalization ability on the LVIS and Objects365 datasets.

The Fisher-Kolmogorov equation is a diffusion-reaction PDE that is used to model the accumulation of prionic proteins, which are responsible for many different neurological disorders. Likely, the most important and studied misfolded protein in literature is the Amyloid-$\beta$, responsible for the onset of Alzheimer disease. Starting from medical images we construct a reduced-order model based on a graph brain connectome. The reaction coefficient of the proteins is modelled as a stochastic random field, taking into account all the many different underlying physical processes, which can hardly be measured. Its probability distribution is inferred by means of the Monte Carlo Markov Chain method applied to clinical data. The resulting model is patient-specific and can be employed for predicting the disease's future development. Forward uncertainty quantification techniques (Monte Carlo and sparse grid stochastic collocation) are applied with the aim of quantifying the impact of the variability of the reaction coefficient on the progression of protein accumulation within the next 20 years.

Cayley hash functions are cryptographic hashes constructed from Cayley graphs of groups. The hash function proposed by Shpilrain and Sosnovski (2016), based on linear functions over a finite field, was proven insecure. This paper shows that the proposal by Ghaffari and Mostaghim (2018) that uses the Shpilrain and Sosnovski's hash in its construction is also insecure. We demonstrate its security vulnerability by constructing collisions.

北京阿比特科技有限公司