亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given $k$ input graphs $G_1, \dots ,G_k$, where each pair $G_i$, $G_j$ with $i \neq j$ shares the same graph $G$, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on $G$. While SEFE is still open for the case of two input graphs, the problem is NP-complete for $k \geq 3$ [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to $k$ plus the vertex cover number or the feedback edge set number of the the union graph $G^\cup = G_1 \cup \dots \cup G_k$. Regarding the shared graph $G$, we show that SEFE is NP-complete, even if $G$ is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of $G$, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.

相關內容

We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing $\mathrm{O}(n)$- and $\mathrm{E}(n)$-equivariant models. We identify and study the $\textit{Clifford group}$, a subgroup inside the Clifford algebra whose definition we adjust to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial in multivectors, An advantage worth mentioning is that we obtain expressive layers that can elegantly generalize to inner-product spaces of any dimension. We demonstrate, notably from a single core implementation, state-of-the-art performance on several distinct tasks, including a three-dimensional $n$-body experiment, a four-dimensional Lorentz-equivariant high-energy physics experiment, and a five-dimensional convex hull experiment.

A 2-packing set for an undirected graph $G=(V,E)$ is a subset $\mathcal{S} \subset V$ such that any two vertices $v_1,v_2 \in \mathcal{S}$ have no common neighbors. Finding a 2-packing set of maximum cardinality is a NP-hard problem. We develop a new approach to solve this problem on arbitrary graphs using its close relation to the independent set problem. Thereby, our algorithm red2pack uses new data reduction rules specific to the 2-packing set problem as well as a graph transformation. Our experiments show that we outperform the state-of-the-art for arbitrary graphs with respect to solution quality and also are able to compute solutions multiple orders of magnitude faster than previously possible. For example, we are able to solve 63% of our graphs to optimality in less than a second while the competitor for arbitrary graphs can only solve 5% of the graphs in the data set to optimality even with a 10 hour time limit. Moreover, our approach can solve a wide range of large instances that have previously been unsolved.

We study the sample complexity of obtaining an $\epsilon$-optimal policy in \emph{Robust} discounted Markov Decision Processes (RMDPs), given only access to a generative model of the nominal kernel. This problem is widely studied in the non-robust case, and it is known that any planning approach applied to an empirical MDP estimated with $\tilde{\mathcal{O}}(\frac{H^3 \mid S \mid\mid A \mid}{\epsilon^2})$ samples provides an $\epsilon$-optimal policy, which is minimax optimal. Results in the robust case are much more scarce. For $sa$- (resp $s$-)rectangular uncertainty sets, the best known sample complexity is $\tilde{\mathcal{O}}(\frac{H^4 \mid S \mid^2\mid A \mid}{\epsilon^2})$ (resp. $\tilde{\mathcal{O}}(\frac{H^4 \mid S \mid^2\mid A \mid^2}{\epsilon^2})$), for specific algorithms and when the uncertainty set is based on the total variation (TV), the KL or the Chi-square divergences. In this paper, we consider uncertainty sets defined with an $L_p$-ball (recovering the TV case), and study the sample complexity of \emph{any} planning algorithm (with high accuracy guarantee on the solution) applied to an empirical RMDP estimated using the generative model. In the general case, we prove a sample complexity of $\tilde{\mathcal{O}}(\frac{H^4 \mid S \mid\mid A \mid}{\epsilon^2})$ for both the $sa$- and $s$-rectangular cases (improvements of $\mid S \mid$ and $\mid S \mid\mid A \mid$ respectively). When the size of the uncertainty is small enough, we improve the sample complexity to $\tilde{\mathcal{O}}(\frac{H^3 \mid S \mid\mid A \mid }{\epsilon^2})$, recovering the lower-bound for the non-robust case for the first time and a robust lower-bound when the size of the uncertainty is small enough.

We study the following characterization problem. Given a set $T$ of terminals and a $(2^{|T|}-2)$-dimensional vector $\pi$ whose coordinates are indexed by proper subsets of $T$, is there a graph $G$ that contains $T$, such that for all subsets $\emptyset\subsetneq S\subsetneq T$, $\pi_S$ equals the value of the min-cut in $G$ separating $S$ from $T\setminus S$? The only known necessary conditions are submodularity and a special class of linear inequalities given by Chaudhuri, Subrahmanyam, Wagner and Zaroliagis. Our main result is a new class of linear inequalities concerning laminar families, that generalize all previous ones. Using our new class of inequalities, we can generalize Karger's approximate min-cut counting result to graphs with terminals.

We study Steiner Forest on $H$-subgraph-free graphs, that is, graphs that do not contain some fixed graph $H$ as a (not necessarily induced) subgraph. We are motivated by a recent framework that completely characterizes the complexity of many problems on $H$-subgraph-free graphs. However, in contrast to e.g. the related Steiner Tree problem, Steiner Forest falls outside this framework. Hence, the complexity of Steiner Forest on $H$-subgraph-free graphs remained tantalizingly open. In this paper, we make significant progress towards determining the complexity of Steiner Forest on $H$-subgraph-free graphs. Our main results are four novel polynomial-time algorithms for different excluded graphs $H$ that are central to further understand its complexity. Along the way, we study the complexity of Steiner Forest for graphs with a small $c$-deletion set, that is, a small set $S$ of vertices such that each component of $G-S$ has size at most $c$. Using this parameter, we give two noteworthy algorithms that we later employ as subroutines. First, we prove Steiner Forest is FPT parameterized by $|S|$ when $c=1$ (i.e. the vertex cover number). Second, we prove Steiner Forest is polynomial-time solvable for graphs with a 2-deletion set of size at most 2. The latter result is tight, as the problem is NP-complete for graphs with a 3-deletion set of size 2.

We consider functions $f: \mathbb{Z} \to \mathbb{R}$ and kernels $u: \{-n, \cdots, n\} \to \mathbb{R}$ normalized by $\sum_{\ell = -n}^{n} u(\ell) = 1$, making the convolution $u \ast f$ a "smoother" local average of $f$. We identify which choice of $u$ most effectively smooths the second derivative in the following sense. For each $u$, basic Fourier analysis implies there is a constant $C(u)$ so $\|\Delta(u \ast f)\|_{\ell^2(\mathbb{Z})} \leq C(u)\|f\|_{\ell^2(\mathbb{Z})}$ for all $f: \mathbb{Z} \to \mathbb{R}$. By compactness, there is some $u$ that minimizes $C(u)$ and in this paper, we find explicit expressions for both this minimal $C(u)$ and the minimizing kernel $u$ for every $n$. The minimizing kernel is remarkably close to the Epanechnikov kernel in Statistics. This solves a problem of Kravitz-Steinerberger and an extremal problem for polynomials is solved as a byproduct.

According to the classic Chv{\'{a}}tal's Lemma from 1977, a graph of minimum degree $\delta(G)$ contains every tree on $\delta(G)+1$ vertices. Our main result is the following algorithmic "extension" of Chv\'{a}tal's Lemma: For any $n$-vertex graph $G$, integer $k$, and a tree $T$ on at most $\delta(G)+k$ vertices, deciding whether $G$ contains a subgraph isomorphic to $T$, can be done in time $f(k)\cdot n^{\mathcal{O}(1)}$ for some function $f$ of $k$ only. The proof of our main result is based on an interplay between extremal graph theory and parameterized algorithms.

We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in $\mathbb{R}^3$, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, $T_{\epsilon}$, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on $T_{\epsilon}$ are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for $\Gamma = \mathbb{S}^2$.

We consider structured approximation of measures in Wasserstein space $W_p(\mathbb{R}^d)$ for $p\in[1,\infty)$ by discrete and piecewise constant measures based on a scaled Voronoi partition of $\mathbb{R}^d$. We show that if a full rank lattice $\Lambda$ is scaled by a factor of $h\in(0,1]$, then approximation of a measure based on the Voronoi partition of $h\Lambda$ is $O(h)$ regardless of $d$ or $p$. We then use a covering argument to show that $N$-term approximations of compactly supported measures is $O(N^{-\frac1d})$ which matches known rates for optimal quantizers and empirical measure approximation in most instances. Finally, we extend these results to noncompactly supported measures with sufficient decay.

This paper studies the prediction of a target $\mathbf{z}$ from a pair of random variables $(\mathbf{x},\mathbf{y})$, where the ground-truth predictor is additive $\mathbb{E}[\mathbf{z} \mid \mathbf{x},\mathbf{y}] = f_\star(\mathbf{x}) +g_{\star}(\mathbf{y})$. We study the performance of empirical risk minimization (ERM) over functions $f+g$, $f \in F$ and $g \in G$, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class $F$ is "simpler" than $G$ (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts} in which the shift in $\mathbf{x}$ is much greater than that in $\mathbf{y}$. Our analysis proceeds by demonstrating that ERM behaves qualitatively similarly to orthogonal machine learning: the rate at which ERM recovers the $f$-component of the predictor has only a lower-order dependence on the complexity of the class $G$, adjusted for partial non-indentifiability introduced by the additive structure. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.

北京阿比特科技有限公司