亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in $\mathbb{R}^3$, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, $T_{\epsilon}$, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on $T_{\epsilon}$ are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for $\Gamma = \mathbb{S}^2$.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Non-autoregressive models have been widely studied in the Complete Information Scenario (CIS), in which the input has complete information of corresponding output. However, their explorations in the Incomplete Information Scenario (IIS) are extremely limited. Our analyses reveal that the IIS's incomplete input information will augment the inherent limitations of existing non-autoregressive models trained under Maximum Likelihood Estimation. In this paper, we propose for the IIS an Adversarial Non-autoregressive Transformer (ANT) which has two features: 1) Position-Aware Self-Modulation to provide more reasonable hidden representations, and 2) Dependency Feed Forward Network to strengthen its capacity in dependency modeling. We compare ANT with other mainstream models in the IIS and demonstrate that ANT can achieve comparable performance with much fewer decoding iterations. Furthermore, we show its great potential in various applications like latent interpolation and semi-supervised learning.

We introduce a framework for solving a class of parabolic partial differential equations on triangle mesh surfaces, including the Hamilton-Jacobi equation and the Fokker-Planck equation. PDE in this class often have nonlinear or stiff terms that cannot be resolved with standard methods on curved triangle meshes. To address this challenge, we leverage a splitting integrator combined with a convex optimization step to solve these PDE. Our machinery can be used to compute entropic approximation of optimal transport distances on geometric domains, overcoming the numerical limitations of the state-of-the-art method. In addition, we demonstrate the versatility of our method on a number of linear and nonlinear PDE that appear in diffusion and front propagation tasks in geometry processing.

A graph class $\mathscr{C}$ is called monadically stable if one cannot interpret, in first-order logic, arbitrary large linear orders in colored graphs from $\mathscr{C}$. We prove that the model checking problem for first-order logic is fixed-parameter tractable on every monadically stable graph class. This extends the results of [Grohe, Kreutzer, and Siebertz; J. ACM '17] for nowhere dense classes and of [Dreier, M\"ahlmann, and Siebertz; STOC '23] for structurally nowhere dense classes to all monadically stable classes. As a complementary hardness result, we prove that for every hereditary graph class $\mathscr{C}$ that is edge-stable (excludes some half-graph as a semi-induced subgraph) but not monadically stable, first-order model checking is $\mathrm{AW}[*]$-hard on $\mathscr{C}$, and $\mathrm{W}[1]$-hard when restricted to existential sentences. This confirms, in the special case of edge-stable classes, an on-going conjecture that the notion of monadic NIP delimits the tractability of first-order model checking on hereditary classes of graphs. For our tractability result, we first prove that monadically stable graph classes have almost linear neighborhood complexity. Using this, we construct sparse neighborhood covers for monadically stable classes, which provides the missing ingredient for the algorithm of [Dreier, M\"ahlmann, and Siebertz; STOC '23]. The key component of this construction is the usage of orders with low crossing number [Welzl; SoCG '88], a tool from the area of range queries. For our hardness result, we prove a new characterization of monadically stable graph classes in terms of forbidden induced subgraphs. We then use this characterization to show that in hereditary classes that are edge-stable but not monadically stable, one can effectively interpret the class of all graphs using only existential formulas.

The Djokovi\'{c}-Winkler relation $\Theta$ is a binary relation defined on the edge set of a given graph that is based on the distances of certain vertices and which plays a prominent role in graph theory. In this paper, we explore the relatively uncharted ``reflexive complement'' $\overline\Theta$ of $\Theta$, where $(e,f)\in \overline\Theta$ if and only if $e=f$ or $(e,f)\notin \Theta$ for edges $e$ and $f$. We establish the relationship between $\overline\Theta$ and the set $\Delta_{ef}$, comprising the distances between the vertices of $e$ and $f$ and shed some light on the intricacies of its transitive closure $\overline\Theta^*$. Notably, we demonstrate that $\overline\Theta^*$ exhibits multiple equivalence classes only within a restricted subclass of complete multipartite graphs. In addition, we characterize non-trivial relations $R$ that coincide with $\overline\Theta$ as those where the graph representation is disconnected, with each connected component being the (join of) Cartesian product of complete graphs. The latter results imply, somewhat surprisingly, that knowledge about the distances between vertices is not required to determine $\overline\Theta^*$. Moreover, $\overline\Theta^*$ has either exactly one or three equivalence classes.

We revisit the well-known Curve Shortening Flow for immersed curves in the $d$-dimensional Euclidean space. We exploit a fundamental structure of the problem to derive a new global construction of a solution, that is, a construction that is valid for all times and is insensitive to singularities. The construction is characterized by discretization in time and the approximant, while still exhibiting the possibile formation of finitely many singularities at a finite set of singular times, exists globally and is well behaved and simpler to analyze than a solution of the CSF. A solution of the latter is obtained in the limit. Estimates for a natural (geometric) norm involving length and total absolute curvature allow passage to the limit. Many classical qualitative results about the flow can be recovered by exploiting the simplicity of the approximant and new ones can be proved. The construction also suggests a numerical procedure for the computation of the flow which proves very effective as demonstrated by a series of numerical experiments scattered throughout the paper.

A fundamental functional in nonparametric statistics is the Mann-Whitney functional ${\theta} = P (X < Y )$ , which constitutes the basis for the most popular nonparametric procedures. The functional ${\theta}$ measures a location or stochastic tendency effect between two distributions. A limitation of ${\theta}$ is its inability to capture scale differences. If differences of this nature are to be detected, specific tests for scale or omnibus tests need to be employed. However, the latter often suffer from low power, and they do not yield interpretable effect measures. In this manuscript, we extend ${\theta}$ by additionally incorporating the recently introduced distribution overlap index (nonparametric dispersion measure) $I_2$ that can be expressed in terms of the quantile process. We derive the joint asymptotic distribution of the respective estimators of ${\theta}$ and $I_2$ and construct confidence regions. Extending the Wilcoxon- Mann-Whitney test, we introduce a new test based on the joint use of these functionals. It results in much larger consistency regions while maintaining competitive power to the rank sum test for situations in which {\theta} alone would suffice. Compared with classical omnibus tests, the simulated power is much improved. Additionally, the newly proposed inference method yields effect measures whose interpretation is surprisingly straightforward.

Let $\mathcal{X}$ and $\mathcal{Y}$ be two sets and suppose that a set of participants $P=\{P_1,P_2,\dots,P_n\}$ would like to calculate the keyed hash value of some message $m\in\mathcal{X}$ known to a single participant in $P$ called the data owner. Also, suppose that each participant $P_i$ knows a secret value $x_i\in\mathcal{X}$. In this paper, we will propose a protocol that enables the participants in this setup to calculate the value $y=H(m,x_1,x_2,\dots ,x_n)$ of a hash function $H:\mathcal{X}^{n+1}\rightarrow\mathcal{Y}$ such that the function $H$ is a one-way function, participants in $P\backslash\{P_i\}$ cannot obtain $x_i$, participants other than the data owner cannot obtain $m$, and the hash value $y=H(m,x_1,x_2,\dots ,x_n)$ remains the same regardless the order of the secret $x_i$ values.

We introduce innovative algorithms for computing exact or approximate (minimum-norm) solutions to $Ax=b$ or the {\it normal equation} $A^TAx=A^Tb$, where $A$ is an $m \times n$ real matrix of arbitrary rank. We present more efficient algorithms when $A$ is symmetric PSD. First, we introduce the {\it Triangle Algorithm} (TA), a {\it convex-hull membership} algorithm that given $b_k=Ax_k$ in the ellipsoid $E_{A,\rho}=\{Ax: \Vert x \Vert \leq \rho\}$, it either computes an improved approximation $b_{k+1}=Ax_{k+1}$ or proves $b \not \in E_{A,\rho}$. We then give a dynamic variant of TA, the {\it Centering Triangle Algorithm} (CTA), generating residual, $r_k=b -Ax_k$ via the iteration of $F_1(r)=r-(r^THr/r^TH^2r)Hr$, where $H=AA^T$. If $A$ is symmetric PSD, $H$ can be taken as $A$. Next, for each $t=1, \dots, m$, we derive $F_t(r)=r- \sum_{i=1}^t \alpha_{t,i}(r) H^i r$ whose iterations correspond to a Krylov subspace method with restart. If $\kappa^+(H)$ is the ratio of the largest to smallest positive eigenvalues of $H$, when $Ax=b$ is consistent, in $k=O({\kappa^+(H)}{t^{-1}} \ln \varepsilon^{-1})$ iterations of $F_t$, $\Vert r_k \Vert \leq \varepsilon$. Each iteration takes $O(tN+t^3)$ operations, $N$ the number of nonzero entries in $A$. By directly applying $F_t$ to the normal equation, we get $\Vert A^TAx_k - A^Tb \Vert \leq \varepsilon$ in $O({\kappa^+(AA^T)}{t}^{-1} \ln \varepsilon^{-1})$ iterations. On the other hand, given any residual $r$, we compute $s$, the degree of its minimal polynomial with respect to $H$ in $O(sN+s^3)$ operations. Then $F_s(r)$ gives the minimum-norm solution of $Ax=b$ or an exact solution of $A^TAx=A^Tb$. The proposed algorithms are simple to implementation and theoretically robust. We present sample computational results, comparing the performance of CTA with CG and GMRES methods. The results support CTA as a highly competitive option.

Debugging physical computing projects provides a rich context to understand cross-disciplinary problem solving that integrates multiple domains of computing and engineering. Yet understanding and assessing students' learning of debugging remains a challenge, particularly in understudied areas such as physical computing, since finding and fixing hardware and software bugs is a deeply contextual practice. In this paper we draw on the rich history of clinical interviews to develop and pilot "failure artifact scenarios" in order to study changes in students' approaches to debugging and troubleshooting electronic textiles (e-textiles). We applied this clinical interview protocol before and after an eight-week-long e-textiles unit. We analyzed pre/post clinical interviews from 18 students at four different schools. The analysis revealed that students improved in identifying bugs with greater specificity, and across domains, and in considering multiple causes for bugs. We discuss implications for developing tools to assess students' debugging abilities through contextualized debugging scenarios in physical computing.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

北京阿比特科技有限公司