A graph class $\mathscr{C}$ is called monadically stable if one cannot interpret, in first-order logic, arbitrary large linear orders in colored graphs from $\mathscr{C}$. We prove that the model checking problem for first-order logic is fixed-parameter tractable on every monadically stable graph class. This extends the results of [Grohe, Kreutzer, and Siebertz; J. ACM '17] for nowhere dense classes and of [Dreier, M\"ahlmann, and Siebertz; STOC '23] for structurally nowhere dense classes to all monadically stable classes. As a complementary hardness result, we prove that for every hereditary graph class $\mathscr{C}$ that is edge-stable (excludes some half-graph as a semi-induced subgraph) but not monadically stable, first-order model checking is $\mathrm{AW}[*]$-hard on $\mathscr{C}$, and $\mathrm{W}[1]$-hard when restricted to existential sentences. This confirms, in the special case of edge-stable classes, an on-going conjecture that the notion of monadic NIP delimits the tractability of first-order model checking on hereditary classes of graphs. For our tractability result, we first prove that monadically stable graph classes have almost linear neighborhood complexity. Using this, we construct sparse neighborhood covers for monadically stable classes, which provides the missing ingredient for the algorithm of [Dreier, M\"ahlmann, and Siebertz; STOC '23]. The key component of this construction is the usage of orders with low crossing number [Welzl; SoCG '88], a tool from the area of range queries. For our hardness result, we prove a new characterization of monadically stable graph classes in terms of forbidden induced subgraphs. We then use this characterization to show that in hereditary classes that are edge-stable but not monadically stable, one can effectively interpret the class of all graphs using only existential formulas.
This paper addresses the problem of finding a minimum-cost $m$-state Markov chain $(S_0,\ldots,S_{m-1})$ in a large set of chains. The chains studied have a reward associated with each state. The cost of a chain is its "gain", i.e., its average reward under its stationary distribution. Specifically, for each $k=0,\ldots,m-1$ there is a known set ${\mathbb S}_k$ of type-$k$ states. A permissible Markov chain contains exactly one state of each type; the problem is to find a minimum-cost permissible chain. The original motivation was to find a cheapest binary AIFV-$m$ lossless code on a source alphabet of size $n$. Such a code is an $m$-tuple of trees, in which each tree can be viewed as a Markov Chain state. This formulation was then used to address other problems in lossless compression. The known solution techniques for finding minimum-cost Markov chains were iterative and ran in exponential time. This paper shows how to map every possible type-$k$ state into a type-$k$ hyperplane and then define a "Markov Chain Polytope" as the lower envelope of all such hyperplanes. Finding a minimum-cost Markov chain can then be shown to be equivalent to finding a "highest" point on this polytope. The local optimization procedures used in the previous iterative algorithms are shown to be separation oracles for this polytope. Since these were often polynomial time, an application of the Ellipsoid method immediately leads to polynomial time algorithms for these problems.
Multi-distribution learning (MDL), which seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions, has emerged as a unified framework in response to the evolving demand for robustness, fairness, multi-group collaboration, etc. Achieving data-efficient MDL necessitates adaptive sampling, also called on-demand sampling, throughout the learning process. However, there exist substantial gaps between the state-of-the-art upper and lower bounds on the optimal sample complexity. Focusing on a hypothesis class of Vapnik-Chervonenkis (VC) dimension $d$, we propose a novel algorithm that yields an $varepsilon$-optimal randomized hypothesis with a sample complexity on the order of $(d+k)/\varepsilon^2$ (modulo some logarithmic factor), matching the best-known lower bound. Our algorithmic ideas and theory have been further extended to accommodate Rademacher classes. The proposed algorithms are oracle-efficient, which access the hypothesis class solely through an empirical risk minimization oracle. Additionally, we establish the necessity of randomization, unveiling a large sample size barrier when only deterministic hypotheses are permitted. These findings successfully resolve three open problems presented in COLT 2023 (i.e., Awasthi et al., (2023, Problem 1, 3 and 4)).
A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.
Cross-domain sequential recommendation (CDSR) shifts the modeling of user preferences from flat to stereoscopic by integrating and learning interaction information from multiple domains at different granularities (ranging from inter-sequence to intra-sequence and from single-domain to cross-domain). In this survey, we first define the CDSR problem using a four-dimensional tensor and then analyze its multi-type input representations under multidirectional dimensionality reductions. Following that, we provide a systematic overview from both macro and micro views. From a macro view, we abstract the multi-level fusion structures of various models across domains and discuss their bridges for fusion. From a micro view, focusing on the existing models, we specifically discuss the basic technologies and then explain the auxiliary learning technologies. Finally, we exhibit the available public datasets and the representative experimental results as well as provide some insights into future directions for research in CDSR.
We present a $O(n^{\frac{3}{2}})$-time algorithm for the \emph{shortest (diagonal) flip path problem} for \emph{lattice} triangulations with $n$ points, improving over previous $O(n^2)$-time algorithms. For a large, natural class of inputs, our bound is tight in the sense that our algorithm runs in time linear in the number of flips in the output flip path. Our results rely on an independently interesting structural elucidation of shortest flip paths as the linear orderings of a unique partially ordered set, called a \emph{minimum flip plan}, constructed by a novel use of Farey sequences from elementary number theory. Flip paths between general (not necessarily lattice) triangulations have been studied in the combinatorial setting for nearly a century. In the Euclidean geometric setting, finding a shortest flip path between two triangulations is NP-complete. However, for lattice triangulations, which are studied as spin systems, there are known $O\left(n^2\right)$-time algorithms to find shortest flip paths. These algorithms, as well as ours, apply to \emph{constrained} flip paths that ensure a set of \emph{constraint} edges are present in every triangulation along the path. Implications for determining simultaneously flippable edges, i.e. finding optimal simultaneous flip paths between lattice triangulations, and for counting lattice triangulations are discussed.
Data consisting of a graph with a function to $\mathbb{R}^d$ arise in many data applications, encompassing structures such as Reeb graphs, geometric graphs, and knot embeddings. As such, the ability to compare and cluster such objects is required in a data analysis pipeline, leading to a need for distances or metrics between them. In this work, we study the interleaving distance on discretizations of these objects, $\mathbb{R}^d$-mapper graphs, where functor representations of the data can be compared by finding pairs of natural transformations between them. However, in many cases, computation of the interleaving distance is NP-hard. For this reason, we take inspiration from the work of Robinson to find quality measures for families of maps that do not rise to the level of a natural transformation, called assignments. We then endow the functor images with the extra structure of a metric space and define a loss function which measures how far an assignment is from making the required diagrams of an interleaving commute. Finally we show that the computation of the loss function is polynomial. We believe this idea is both powerful and translatable, with the potential to be used for approximation and bounds on interleavings in a broad array of contexts.
Interpolatory necessary optimality conditions for $\mathcal{H}_2$-optimal reduced-order modeling of non-parametric linear time-invariant (LTI) systems are known and well-investigated. In this work, using the general framework of $\mathcal{L}_2$-optimal reduced-order modeling of parametric stationary problems, we derive interpolatory $\mathcal{H}_2 \otimes \mathcal{L}_2$-optimality conditions for parametric LTI systems with a general pole-residue form. We then specialize this result to recover known conditions for systems with parameter-independent poles and develop new conditions for a certain class of systems with parameter-dependent poles.
Bayesian Optimization (BO) is typically used to optimize an unknown function $f$ that is noisy and costly to evaluate, by exploiting an acquisition function that must be maximized at each optimization step. Even if provably asymptotically optimal BO algorithms are efficient at optimizing low-dimensional functions, scaling them to high-dimensional spaces remains an open problem, often tackled by assuming an additive structure for $f$. By doing so, BO algorithms typically introduce additional restrictive assumptions on the additive structure that reduce their applicability domain. This paper contains two main contributions: (i) we relax the restrictive assumptions on the additive structure of $f$ without weakening the maximization guarantees of the acquisition function, and (ii) we address the over-exploration problem for decentralized BO algorithms. To these ends, we propose DuMBO, an asymptotically optimal decentralized BO algorithm that achieves very competitive performance against state-of-the-art BO algorithms, especially when the additive structure of $f$ comprises high-dimensional factors.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.