A fundamental functional in nonparametric statistics is the Mann-Whitney functional ${\theta} = P (X < Y )$ , which constitutes the basis for the most popular nonparametric procedures. The functional ${\theta}$ measures a location or stochastic tendency effect between two distributions. A limitation of ${\theta}$ is its inability to capture scale differences. If differences of this nature are to be detected, specific tests for scale or omnibus tests need to be employed. However, the latter often suffer from low power, and they do not yield interpretable effect measures. In this manuscript, we extend ${\theta}$ by additionally incorporating the recently introduced distribution overlap index (nonparametric dispersion measure) $I_2$ that can be expressed in terms of the quantile process. We derive the joint asymptotic distribution of the respective estimators of ${\theta}$ and $I_2$ and construct confidence regions. Extending the Wilcoxon- Mann-Whitney test, we introduce a new test based on the joint use of these functionals. It results in much larger consistency regions while maintaining competitive power to the rank sum test for situations in which {\theta} alone would suffice. Compared with classical omnibus tests, the simulated power is much improved. Additionally, the newly proposed inference method yields effect measures whose interpretation is surprisingly straightforward.
This paper addresses the problem of finding a minimum-cost $m$-state Markov chain $(S_0,\ldots,S_{m-1})$ in a large set of chains. The chains studied have a reward associated with each state. The cost of a chain is its "gain", i.e., its average reward under its stationary distribution. Specifically, for each $k=0,\ldots,m-1$ there is a known set ${\mathbb S}_k$ of type-$k$ states. A permissible Markov chain contains exactly one state of each type; the problem is to find a minimum-cost permissible chain. The original motivation was to find a cheapest binary AIFV-$m$ lossless code on a source alphabet of size $n$. Such a code is an $m$-tuple of trees, in which each tree can be viewed as a Markov Chain state. This formulation was then used to address other problems in lossless compression. The known solution techniques for finding minimum-cost Markov chains were iterative and ran in exponential time. This paper shows how to map every possible type-$k$ state into a type-$k$ hyperplane and then define a "Markov Chain Polytope" as the lower envelope of all such hyperplanes. Finding a minimum-cost Markov chain can then be shown to be equivalent to finding a "highest" point on this polytope. The local optimization procedures used in the previous iterative algorithms are shown to be separation oracles for this polytope. Since these were often polynomial time, an application of the Ellipsoid method immediately leads to polynomial time algorithms for these problems.
Mapping speech tokens to the same feature space as text tokens has become the paradigm for the integration of speech modality into decoder-only large language models (LLMs). An alternative approach is to use an encoder-decoder architecture that incorporates speech features through cross-attention. This approach, however, has received less attention in the literature. In this work, we connect the Whisper encoder with ChatGLM3 and provide in-depth comparisons of these two approaches using Chinese automatic speech recognition (ASR) and name entity recognition (NER) tasks. We evaluate them not only by conventional metrics like the F1 score but also by a novel fine-grained taxonomy of ASR-NER errors. Our experiments reveal that encoder-decoder architecture outperforms decoder-only architecture with a short context, while decoder-only architecture benefits from a long context as it fully exploits all layers of the LLM. By using LLM, we significantly reduced the entity omission errors and improved the entity ASR accuracy compared to the Conformer baseline. Additionally, we obtained a state-of-the-art (SOTA) F1 score of 0.805 on the AISHELL-NER test set by using chain-of-thought (CoT) NER which first infers long-form ASR transcriptions and then predicts NER labels.
We provide an analysis of the squared Wasserstein-2 ($W_2$) distance between two probability distributions associated with two stochastic differential equations (SDEs). Based on this analysis, we propose the use of a squared $W_2$ distance-based loss functions in the \textit{reconstruction} of SDEs from noisy data. To demonstrate the practicality of our Wasserstein distance-based loss functions, we performed numerical experiments that demonstrate the efficiency of our method in reconstructing SDEs that arise across a number of applications.
We present an analysis of total-variation (TV) on non-Euclidean parameterized surfaces, a natural representation of the shapes used in 3D graphics. Our work explains recent experimental findings in shape spectral TV [Fumero et al., 2020] and adaptive anisotropic spectral TV [Biton and Gilboa, 2022]. A new way to generalize set convexity from the plane to surfaces is derived by characterizing the TV eigenfunctions on surfaces. Relationships between TV, area, eigenvalue, eigenfunctions and their discontinuities are discovered. Further, we expand the shape spectral TV toolkit to include versatile zero-homogeneous flows demonstrated through smoothing and exaggerating filters. Last but not least, we propose the first TV-based method for shape deformation, characterized by deformations along geometrical bottlenecks. We show these bottlenecks to be aligned with eigenfunction discontinuities. This research advances the field of spectral TV on surfaces and its application in 3D graphics, offering new perspectives for shape filtering and deformation.
Panoptic and instance segmentation networks are often trained with specialized object detection modules, complex loss functions, and ad-hoc post-processing steps to handle the permutation-invariance of the instance masks. This work builds upon Stable Diffusion and proposes a latent diffusion approach for panoptic segmentation, resulting in a simple architecture which omits these complexities. Our training process consists of two steps: (1) training a shallow autoencoder to project the segmentation masks to latent space; (2) training a diffusion model to allow image-conditioned sampling in latent space. The use of a generative model unlocks the exploration of mask completion or inpainting, which has applications in interactive segmentation. The experimental validation yields promising results for both panoptic segmentation and mask inpainting. While not setting a new state-of-the-art, our model's simplicity, generality, and mask completion capability are desirable properties.
Adaptive finite element methods are a powerful tool to obtain numerical simulation results in a reasonable time. Due to complex chemical and mechanical couplings in lithium-ion batteries, numerical simulations are very helpful to investigate promising new battery active materials such as amorphous silicon featuring a higher energy density than graphite. Based on a thermodynamically consistent continuum model with large deformation and chemo-mechanically coupled approach, we compare three different spatial adaptive refinement strategies: Kelly-, gradient recovery- and residual based error estimation. For the residual based case, the strong formulation of the residual is explicitly derived. With amorphous silicon as example material, we investigate two 3D representative host particle geometries, reduced with symmetry assumptions to a 1D unit interval and a 2D elliptical domain. Our numerical studies show that the Kelly estimator overestimates the error, whereas the gradient recovery estimator leads to lower refinement levels and a good capture of the change of the lithium flux. The residual based error estimator reveals a strong dependency on the cell error part which can be improved by a more suitable choice of constants to be more efficient. In a 2D domain, the concentration has a larger influence on the mesh distribution than the Cauchy stress.
Data consisting of a graph with a function to $\mathbb{R}^d$ arise in many data applications, encompassing structures such as Reeb graphs, geometric graphs, and knot embeddings. As such, the ability to compare and cluster such objects is required in a data analysis pipeline, leading to a need for distances or metrics between them. In this work, we study the interleaving distance on discretizations of these objects, $\mathbb{R}^d$-mapper graphs, where functor representations of the data can be compared by finding pairs of natural transformations between them. However, in many cases, computation of the interleaving distance is NP-hard. For this reason, we take inspiration from the work of Robinson to find quality measures for families of maps that do not rise to the level of a natural transformation, called assignments. We then endow the functor images with the extra structure of a metric space and define a loss function which measures how far an assignment is from making the required diagrams of an interleaving commute. Finally we show that the computation of the loss function is polynomial. We believe this idea is both powerful and translatable, with the potential to be used for approximation and bounds on interleavings in a broad array of contexts.
Interpolatory necessary optimality conditions for $\mathcal{H}_2$-optimal reduced-order modeling of non-parametric linear time-invariant (LTI) systems are known and well-investigated. In this work, using the general framework of $\mathcal{L}_2$-optimal reduced-order modeling of parametric stationary problems, we derive interpolatory $\mathcal{H}_2 \otimes \mathcal{L}_2$-optimality conditions for parametric LTI systems with a general pole-residue form. We then specialize this result to recover known conditions for systems with parameter-independent poles and develop new conditions for a certain class of systems with parameter-dependent poles.
We give a procedure for computing group-level $(\epsilon, \delta)$-DP guarantees for DP-SGD, when using Poisson sampling or fixed batch size sampling. Up to discretization errors in the implementation, the DP guarantees computed by this procedure are tight (assuming we release every intermediate iterate).
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.