In recent years, autonomous driving has garnered significant attention due to its potential for improving road safety through collaborative perception among connected and autonomous vehicles (CAVs). However, time-varying channel variations in vehicular transmission environments demand dynamic allocation of communication resources. Moreover, in the context of collaborative perception, it is important to recognize that not all CAVs contribute valuable data, and some CAV data even have detrimental effects on collaborative perception. In this paper, we introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism to facilitate CAV data fusion. Our approach begins with optimizing the connectivity of vehicles while considering communication constraints. We then train a learnable encoder to dynamically adjust the compression ratio based on the channel state information (CSI). Subsequently, we devise a judger mechanism to filter the detrimental image data reconstructed by adaptive decoders. We evaluate the effectiveness of our proposed algorithm on the OpenCOOD platform. Our results demonstrate a substantial reduction in communication costs by 23.10\% compared to the non-judger scheme. Additionally, we achieve a significant improvement on the average precision of Intersection over Union (AP@IoU) by 7.15\% compared with state-of-the-art schemes.
With the advent and widespread deployment of Multimodal Large Language Models (MLLMs), the imperative to ensure their safety has become increasingly pronounced. However, with the integration of additional modalities, MLLMs are exposed to new vulnerabilities, rendering them prone to structured-based jailbreak attacks, where semantic content (e.g., "harmful text") has been injected into the images to mislead MLLMs. In this work, we aim to defend against such threats. Specifically, we propose \textbf{Ada}ptive \textbf{Shield} Prompting (\textbf{AdaShield}), which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks without fine-tuning MLLMs or training additional modules (e.g., post-stage content detector). Initially, we present a manually designed static defense prompt, which thoroughly examines the image and instruction content step by step and specifies response methods to malicious queries. Furthermore, we introduce an adaptive auto-refinement framework, consisting of a target MLLM and a LLM-based defense prompt generator (Defender). These components collaboratively and iteratively communicate to generate a defense prompt. Extensive experiments on the popular structure-based jailbreak attacks and benign datasets show that our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks without compromising the model's general capabilities evaluated on standard benign tasks. Our code is available at //github.com/rain305f/AdaShield.
To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. The resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at //moma-llm.cs.uni-freiburg.de.
Various perception-aware planning approaches have attempted to enhance the state estimation accuracy during maneuvers, while the feature matchability among frames, a crucial factor influencing estimation accuracy, has often been overlooked. In this paper, we present APACE, an Agile and Perception-Aware trajeCtory gEneration framework for quadrotors aggressive flight, that takes into account feature matchability during trajectory planning. We seek to generate a perception-aware trajectory that reduces the error of visual-based estimator while satisfying the constraints on smoothness, safety, agility and the quadrotor dynamics. The perception objective is achieved by maximizing the number of covisible features while ensuring small enough parallax angles. Additionally, we propose a differentiable and accurate visibility model that allows decomposition of the trajectory planning problem for efficient optimization resolution. Through validations conducted in both a photorealistic simulator and real-world experiments, we demonstrate that the trajectories generated by our method significantly improve state estimation accuracy, with root mean square error (RMSE) reduced by up to an order of magnitude. The source code will be released to benefit the community.
Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU.
Quantifying a model's predictive uncertainty is essential for safety-critical applications such as autonomous driving. We consider quantifying such uncertainty for multi-object detection. In particular, we leverage conformal prediction to obtain uncertainty intervals with guaranteed coverage for object bounding boxes. One challenge in doing so is that bounding box predictions are conditioned on the object's class label. Thus, we develop a novel two-step conformal approach that propagates uncertainty in predicted class labels into the uncertainty intervals for the bounding boxes. This broadens the validity of our conformal coverage guarantees to include incorrectly classified objects, ensuring their usefulness when maximal safety assurances are required. Moreover, we investigate novel ensemble and quantile regression formulations to ensure the bounding box intervals are adaptive to object size, leading to a more balanced coverage across sizes. Validating our two-step approach on real-world datasets for 2D bounding box localization, we find that desired coverage levels are satisfied with actionably tight predictive uncertainty intervals.
The interactive decision-making in multi-agent autonomous racing offers insights valuable beyond the domain of self-driving cars. Mapless online path planning is particularly of practical appeal but poses a challenge for safely overtaking opponents due to the limited planning horizon. Accordingly, this paper introduces RaceMOP, a novel method for mapless online path planning designed for multi-agent racing of F1TENTH cars. Unlike classical planners that depend on predefined racing lines, RaceMOP operates without a map, relying solely on local observations to overtake other race cars at high speed. Our approach combines an artificial potential field method as a base policy with residual policy learning to introduce long-horizon planning capabilities. We advance the field by introducing a novel approach for policy fusion with the residual policy directly in probability space. Our experiments for twelve simulated racetracks validate that RaceMOP is capable of long-horizon decision-making with robust collision avoidance during overtaking maneuvers. RaceMOP demonstrates superior handling over existing mapless planners while generalizing to unknown racetracks, paving the way for further use of our method in robotics. We make the open-source code for RaceMOP available at //github.com/raphajaner/racemop.
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.