亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The geodesic model based on the eikonal partial differential equation (PDE) has served as a fundamental tool for the applications of image segmentation and boundary detection in the past two decades. However, the existing approaches commonly only exploit the image edge-based features for computing minimal geodesic paths, potentially limiting their performance in complicated segmentation situations. In this paper, we introduce a new variational image segmentation model based on the minimal geodesic path framework and the eikonal PDE, where the region-based appearance term that defines then regional homogeneity features can be taken into account for estimating the associated minimal geodesic paths. This is done by constructing a Randers geodesic metric interpretation of the region-based active contour energy functional. As a result, the minimization of the active contour energy functional is transformed into finding the solution to the Randers eikonal PDE. We also suggest a practical interactive image segmentation strategy, where the target boundary can be delineated by the concatenation of several piecewise geodesic paths. We invoke the Finsler variant of the fast marching method to estimate the geodesic distance map, yielding an efficient implementation of the proposed region-based Randers geodesic model for image segmentation. Experimental results on both synthetic and real images exhibit that our model indeed achieves encouraging segmentation performance.

相關內容

圖像分割就是把圖像分成若干個特定的、具有獨特性質的區域并提出感興趣目標的技術和過程。它是由圖像處理到圖像分析的關鍵步驟。 所謂圖像分割指的是根據灰度、顏色、紋理和形狀等特征把圖像劃分成若干互不交迭的區域,并使這些特征在同一區域內呈現出相似性,而在不同區域間呈現出明顯的差異性。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Federated Learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator. Traditional FL solutions rely on the trust assumption of the centralized aggregator, which forms cohorts of clients in a fair and honest manner. However, a malicious aggregator, in reality, could abandon and replace the client's training models, or launch Sybil attacks to insert fake clients. Such malicious behaviors give the aggregator more power to control clients in the FL setting and determine the final training results. In this work, we introduce zkFL, which leverages zero-knowledge proofs (ZKPs) to tackle the issue of a malicious aggregator during the training model aggregation process. To guarantee the correct aggregation results, the aggregator needs to provide a proof per round. The proof can demonstrate to the clients that the aggregator executes the intended behavior faithfully. To further reduce the verification cost of clients, we employ a blockchain to handle the proof in a zero-knowledge way, where miners (i.e., the nodes validating and maintaining the blockchain data) can verify the proof without knowing the clients' local and aggregated models. The theoretical analysis and empirical results show that zkFL can achieve better security and privacy than traditional FL, without modifying the underlying FL network structure or heavily compromising the training speed.

Precise arbitrary trajectory tracking for quadrotors is challenging due to unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To tackle these challenges, we present Deep Adaptive Trajectory Tracking (DATT), a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world. DATT builds on a novel feedforward-feedback-adaptive control structure trained in simulation using reinforcement learning. When deployed on real hardware, DATT is augmented with a disturbance estimator using L1 adaptive control in closed-loop, without any fine-tuning. DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields, including challenging scenarios where baselines completely fail. Moreover, DATT can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline

Automated event detection has emerged as one of the fundamental practices to monitor the behavior of technical systems by means of sensor data. In the automotive industry, these methods are in high demand for tracing events in time series data. For assessing the active vehicle safety systems, a diverse range of driving scenarios is conducted. These scenarios involve the recording of the vehicle's behavior using external sensors, enabling the evaluation of operational performance. In such setting, automated detection methods not only accelerate but also standardize and objectify the evaluation by avoiding subjective, human-based appraisals in the data inspection. This work proposes a novel event detection method that allows to identify frequency-based events in time series data. To this aim, the time series data is mapped to representations in the time-frequency domain, known as scalograms. After filtering scalograms to enhance relevant parts of the signal, an object detection model is trained to detect the desired event objects in the scalograms. For the analysis of unseen time series data, events can be detected in their scalograms with the trained object detection model and are thereafter mapped back to the time series data to mark the corresponding time interval. The algorithm, evaluated on unseen datasets, achieves a precision rate of 0.97 in event detection, providing sharp time interval boundaries whose accurate indication by human visual inspection is challenging. Incorporating this method into the vehicle development process enhances the accuracy and reliability of event detection, which holds major importance for rapid testing analysis.

Bayesian optimization (BO) developed as an approach for the efficient optimization of expensive black-box functions without gradient information. A typical BO paper introduces a new approach and compares it to some alternatives on simulated and possibly real examples to show its efficacy. Yet on a different example, this new algorithm might not be as effective as the alternatives. This paper looks at a broader family of approaches to explain the strengths and weaknesses of algorithms in the family, with guidance on what choices might work best on different classes of problems.

There is a wide availability of methods for testing normality under the assumption of independent and identically distributed data. When data are dependent in space and/or time, however, assessing and testing the marginal behavior is considerably more challenging, as the marginal behavior is impacted by the degree of dependence. We propose a new approach to assess normality for dependent data by non-linearly incorporating existing statistics from normality tests as well as sample moments such as skewness and kurtosis through a neural network. We calibrate (deep) neural networks by simulated normal and non-normal data with a wide range of dependence structures and we determine the probability of rejecting the null hypothesis. We compare several approaches for normality tests and demonstrate the superiority of our method in terms of statistical power through an extensive simulation study. A real world application to global temperature data further demonstrates how the degree of spatio-temporal aggregation affects the marginal normality in the data.

We develop a Bayesian inference method for discretely-observed stochastic differential equations (SDEs). Inference is challenging for most SDEs, due to the analytical intractability of the likelihood function. Nevertheless, forward simulation via numerical methods is straightforward, motivating the use of approximate Bayesian computation (ABC). We propose a conditional simulation scheme for SDEs that is based on lookahead strategies for sequential Monte Carlo (SMC) and particle smoothing using backward simulation. This leads to the simulation of trajectories that are consistent with the observed trajectory, thereby increasing the ABC acceptance rate. We additionally employ an invariant neural network, previously developed for Markov processes, to learn the summary statistics function required in ABC. The neural network is incrementally retrained by exploiting an ABC-SMC sampler, which provides new training data at each round. Since the SDE simulation scheme differs from standard forward simulation, we propose a suitable importance sampling correction, which has the added advantage of guiding the parameters towards regions of high posterior density, especially in the first ABC-SMC round. Our approach achieves accurate inference and is about three times faster than standard (forward-only) ABC-SMC. We illustrate our method in four simulation studies, including three examples from the Chan-Karaolyi-Longstaff-Sanders SDE family.

In various engineering and applied science applications, repetitive numerical simulations of partial differential equations (PDEs) for varying input parameters are often required (e.g., aircraft shape optimization over many design parameters) and solvers are required to perform rapid execution. In this study, we suggest a path that potentially opens up a possibility for physics-informed neural networks (PINNs), emerging deep-learning-based solvers, to be considered as one such solver. Although PINNs have pioneered a proper integration of deep-learning and scientific computing, they require repetitive time-consuming training of neural networks, which is not suitable for many-query scenarios. To address this issue, we propose a lightweight low-rank PINNs containing only hundreds of model parameters and an associated hypernetwork-based meta-learning algorithm, which allows efficient approximation of solutions of PDEs for varying ranges of PDE input parameters. Moreover, we show that the proposed method is effective in overcoming a challenging issue, known as "failure modes" of PINNs.

Molecular dynamics simulations have emerged as a potent tool for investigating the physical properties and kinetic behaviors of materials at the atomic scale, particularly in extreme conditions. Ab initio accuracy is now achievable with machine learning based interatomic potentials. With recent advancements in high-performance computing, highly accurate and large-scale simulations become feasible. This study introduces TensorMD, a new machine learning interatomic potential (MLIP) model that integrates physical principles and tensor diagrams. The tensor formalism provides a more efficient computation and greater flexibility for use with other scientific codes. Additionally, we proposed several portable optimization strategies and developed a highly optimized version for the new Sunway supercomputer. Our optimized TensorMD can achieve unprecedented performance on the new Sunway, enabling simulations of up to 52 billion atoms with a time-to-solution of 31 ps/step/atom, setting new records for HPC + AI + MD.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司