亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates goal-oriented communication for remote estimation of multiple Markov sources in resource-constrained networks. An agent selects the update order of the sources and transmits the packet to a remote destination over an unreliable delay channel. The destination is tasked with source reconstruction for the purpose of actuation. We utilize the metric cost of actuation error (CAE) to capture the significance (semantics) of error at the point of actuation. We aim to find an optimal sampling policy that minimizes the time-averaged CAE subject to average resource constraints. We formulate this problem as an average-cost constrained Markov Decision Process (CMDP) and transform it into an unconstrained MDP by utilizing Lyapunov drift techniques. Then, we propose a low-complexity drift-plus-penalty(DPP) policy for systems with known source/channel statistics and a Lyapunov optimization-based deep reinforcement learning (LO-DRL) policy for unknown environments. Our policies achieve near-optimal performance in CAE minimization and significantly reduce the number of uninformative transmissions.

相關內容

Website reliability labels underpin almost all research in misinformation detection. However, misinformation sources often exhibit transient behavior, which makes many such labeled lists obsolete over time. We demonstrate that Search Engine Optimization (SEO) attributes provide strong signals for predicting news site reliability. We introduce a novel attributed webgraph dataset with labeled news domains and their connections to outlinking and backlinking domains. We demonstrate the success of graph neural networks in detecting news site reliability using these attributed webgraphs, and show that our baseline news site reliability classifier outperforms current SoTA methods on the PoliticalNews dataset, achieving an F1 score of 0.96. Finally, we introduce and evaluate a novel graph-based algorithm for discovering previously unknown misinformation news sources.

In this work, we introduce L3Cube-IndicNews, a multilingual text classification corpus aimed at curating a high-quality dataset for Indian regional languages, with a specific focus on news headlines and articles. We have centered our work on 10 prominent Indic languages, including Hindi, Bengali, Marathi, Telugu, Tamil, Gujarati, Kannada, Odia, Malayalam, and Punjabi. Each of these news datasets comprises 10 or more classes of news articles. L3Cube-IndicNews offers 3 distinct datasets tailored to handle different document lengths that are classified as: Short Headlines Classification (SHC) dataset containing the news headline and news category, Long Document Classification (LDC) dataset containing the whole news article and the news category, and Long Paragraph Classification (LPC) containing sub-articles of the news and the news category. We maintain consistent labeling across all 3 datasets for in-depth length-based analysis. We evaluate each of these Indic language datasets using 4 different models including monolingual BERT, multilingual Indic Sentence BERT (IndicSBERT), and IndicBERT. This research contributes significantly to expanding the pool of available text classification datasets and also makes it possible to develop topic classification models for Indian regional languages. This also serves as an excellent resource for cross-lingual analysis owing to the high overlap of labels among languages. The datasets and models are shared publicly at //github.com/l3cube-pune/indic-nlp

Language similarities can be caused by genetic relatedness, areal contact, universality, or chance. Colexification, i.e.~a type of similarity where a single lexical form is used to convey multiple meanings, is underexplored. In our work, we shed light on the linguistic causes of cross-lingual similarity in colexification and phonology, by exploring genealogical stability (persistence) and contact-induced change (diffusibility). We construct large-scale graphs incorporating semantic, genealogical, phonological and geographical data for 1,966 languages. We then show the potential of this resource, by investigating several established hypotheses from previous work in linguistics, while proposing new ones. Our results strongly support a previously established hypothesis in the linguistic literature, while offering contradicting evidence to another. Our large scale resource opens for further research across disciplines, e.g.~in multilingual NLP and comparative linguistics.

How scientists navigate between the need to capitalize on their prior knowledge by specializing, and the urge to adapt to evolving research opportunities? Drawing from diverse perspectives on adaptation, in particular from institutional change and cultural evolution, this paper proposes a Bayesian model of the evolution of scientists' research portfolios in response to transformations in their field. The model relies on scientific abstracts and authorship data to evaluate the influence of intellectual, social, and institutional resources on scientists' trajectories within a cohort of $2\,195$ high-energy physicists between 2000 and 2019. The reallocation of research efforts is shown to be structured by learning costs, thus enhancing the utility of the scientific capital disseminated among scientists. Two dimensions of social capital, namely ``diversity'' and ``power'', have opposite effects on the magnitude of change in scientists' research interests: while ``diversity'' disrupts and expands research interests, ``power'' stabilizes physicists' research agendas -- as does institutional stability. Social capital plays a more crucial role in shifts between cognitively distant research areas.

Accurate uncertainty quantification is crucial for the safe deployment of language models (LMs), and prior research has demonstrated improvements in the calibration of modern LMs. Our study focuses on in-context learning (ICL), a prevalent method for adapting static LMs through tailored prompts, and examines the balance between performance and calibration across a broad spectrum of natural language understanding and reasoning tasks. Through comprehensive experiments, we observe that, with an increasing number of ICL examples, models initially exhibit increased miscalibration before achieving better calibration and miscalibration tends to arise in low-shot settings. Moreover, we find that methods aimed at improving usability, such as fine-tuning and chain-of-thought (CoT) prompting, can lead to miscalibration and unreliable natural language explanations, suggesting that new methods may be required for scenarios where models are expected to be reliable.

This paper gives a nearly tight characterization of the quantum communication complexity of the permutation-invariant Boolean functions. With such a characterization, we show that the quantum and randomized communication complexity of the permutation-invariant Boolean functions are quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research regarding query complexity \cite{AA14, Cha19, BCG+20} to communication complexity, showing symmetry prevents exponential quantum speedups. Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-invariant Boolean function. Moreover, we establish a relationship between the quantum/classical communication complexity and the approximate rank of permutation-invariant Boolean functions. This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant Boolean functions in both randomized and quantum settings (up to a logarithmic factor).

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.

北京阿比特科技有限公司