亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper gives a nearly tight characterization of the quantum communication complexity of the permutation-invariant Boolean functions. With such a characterization, we show that the quantum and randomized communication complexity of the permutation-invariant Boolean functions are quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research regarding query complexity \cite{AA14, Cha19, BCG+20} to communication complexity, showing symmetry prevents exponential quantum speedups. Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-invariant Boolean function. Moreover, we establish a relationship between the quantum/classical communication complexity and the approximate rank of permutation-invariant Boolean functions. This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant Boolean functions in both randomized and quantum settings (up to a logarithmic factor).

相關內容

We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch.

Recent advances in operations research and machine learning have revived interest in solving complex real-world, large-size traffic control problems. With the increasing availability of road sensor data, deterministic parametric models have proved inadequate in describing the variability of real-world data, especially in congested area of the density-flow diagram. In this paper we estimate the stochastic density-flow relation introducing a nonparametric method called convex quantile regression. The proposed method does not depend on any prior functional form assumptions, but thanks to the concavity constraints, the estimated function satisfies the theoretical properties of the density-flow curve. The second contribution is to develop the new convex quantile regression with bags (CQRb) approach to facilitate practical implementation of CQR to the real-world data. We illustrate the CQRb estimation process using the road sensor data from Finland in years 2016-2018. Our third contribution is to demonstrate the excellent out-of-sample predictive power of the proposed CQRb method in comparison to the standard parametric deterministic approach.

This paper investigates the problem of controlling a linear system under possibly unbounded and degenerate noise with unknown cost functions, known as an online control problem. In contrast to the existing work, which assumes the boundedness of noise, we reveal that for convex costs, an $ \widetilde{O}(\sqrt{T}) $ regret bound can be achieved even for unbounded noise, where $ T $ denotes the time horizon. Moreover, when the costs are strongly convex, we establish an $ O({\rm poly} (\log T)) $ regret bound without the assumption that noise covariance is non-degenerate, which has been required in the literature. The key ingredient in removing the rank assumption on noise is a system transformation associated with the noise covariance. This simultaneously enables the parameter reduction of an online control algorithm.

We revisit the problems of pitch spelling and tonality guessing with a new algorithm for their joint estimation from a MIDI file including information about the measure boundaries. Our algorithm does not only identify a global key but also local ones all along the analyzed piece. It uses Dynamic Programming techniques to search for an optimal spelling in term, roughly, of the number of accidental symbols that would be displayed in the engraved score. The evaluation of this number is coupled with an estimation of the global key and some local keys, one for each measure. Each of the three informations is used for the estimation of the other, in a multi-steps procedure. An evaluation conducted on a monophonic and a piano dataset, comprising 216 464 notes in total, shows a high degree of accuracy, both for pitch spelling (99.5% on average on the Bach corpus and 98.2% on the whole dataset) and global key signature estimation (93.0% on average, 95.58% on the piano dataset). Designed originally as a backend tool in a music transcription framework, this method should also be useful in other tasks related to music notation processing.

We provide a quantitative assessment of welfare in the classical model of risk-sharing and exchange under uncertainty. We prove three kinds of results. First, that in an equilibrium allocation, the scope for improving individual welfare by a given margin (an $\varepsilon$-improvement) vanishes as the number of states increases. Second, that the scope for a change in aggregate resources that may be distributed to enhance individual welfare by a given margin also vanishes. Equivalently: in an inefficient allocation, for a given level of resource sub-optimality (as measured by the coefficient of resource under-utilization), the possibilities for enhancing welfare by perturbing aggregate resources decrease exponentially to zero with the number of states. Finally, we consider efficient risk-sharing in standard models of uncertainty aversion with multiple priors, and show that, in an inefficient allocation, certain sets of priors shrink with the size of the state space.

6G promises a paradigm shift in which positioning and sensing are inherently integrated, enhancing not only the communication performance but also enabling location- and context-aware services. Historically, positioning and sensing have been viewed through the lens of cost and performance trade-offs, implying an escalated demand for resources, such as radio, physical, and computational resources, for improved performance. However, 6G goes beyond this traditional perspective to encompass a set of broader values, namely sustainability, inclusiveness, and trustworthiness. From a joint industrial/academic perspective, this paper aims to shed light on these important value indicators and their relationship with the conventional key performance indicators in the context of positioning and sensing.

This paper examines gradient flow dynamics of two-homogeneous neural networks for small initializations, where all weights are initialized near the origin. For both square and logistic losses, it is shown that for sufficiently small initializations, the gradient flow dynamics spend sufficient time in the neighborhood of the origin to allow the weights of the neural network to approximately converge in direction to the Karush-Kuhn-Tucker (KKT) points of a neural correlation function that quantifies the correlation between the output of the neural network and corresponding labels in the training data set. For square loss, it has been observed that neural networks undergo saddle-to-saddle dynamics when initialized close to the origin. Motivated by this, this paper also shows a similar directional convergence among weights of small magnitude in the neighborhood of certain saddle points.

This paper presents a new generalization error analysis for Decentralized Stochastic Gradient Descent (D-SGD) based on algorithmic stability. The obtained results overhaul a series of recent works that suggested an increased instability due to decentralization and a detrimental impact of poorly-connected communication graphs on generalization. On the contrary, we show, for convex, strongly convex and non-convex functions, that D-SGD can always recover generalization bounds analogous to those of classical SGD, suggesting that the choice of graph does not matter. We then argue that this result is coming from a worst-case analysis, and we provide a refined data-dependent generalization bound for general convex functions. This new bound reveals that the choice of graph can in fact improve the worst-case bound in certain regimes, and that surprisingly, a poorly-connected graph can even be beneficial.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司