亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online ad platforms offer budget management tools for advertisers that aim to maximize the number of conversions given a budget constraint. As the volume of impressions, conversion rates and prices vary over time, these budget management systems learn a spend plan (to find the optimal distribution of budget over time) and run a pacing algorithm which follows the spend plan. This paper considers two models for impressions and competition that varies with time: a) an episodic model which exhibits stationarity in each episode, but each episode can be arbitrarily different from the next, and b) a model where the distributions of prices and values change slowly over time. We present the first learning theoretic guarantees on both the accuracy of spend plans and the resulting end-to-end budget management system. We present four main results: 1) for the episodic setting we give sample complexity bounds for the spend rate prediction problem: given $n$ samples from each episode, with high probability we have $|\widehat{\rho}_e - \rho_e| \leq \tilde{O}(\frac{1}{n^{1/3}})$ where $\rho_e$ is the optimal spend rate for the episode, $\widehat{\rho}_e$ is the estimate from our algorithm, 2) we extend the algorithm of Balseiro and Gur (2017) to operate on varying, approximate spend rates and show that the resulting combined system of optimal spend rate estimation and online pacing algorithm for episodic settings has regret that vanishes in number of historic samples $n$ and the number of rounds $T$, 3) for non-episodic but slowly-changing distributions we show that the same approach approximates the optimal bidding strategy up to a factor dependent on the rate-of-change of the distributions and 4) we provide experiments showing that our algorithm outperforms both static spend plans and non-pacing across a wide variety of settings.

相關內容

The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

Many recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms by encouraging iterative refinements toward a stable flow estimation. However, these RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation. They can converge poorly and thereby suffer from performance degradation. To combat these drawbacks, we propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer (using any black-box solver), and differentiates through this fixed point analytically (thus requiring $O(1)$ training memory). This implicit-depth approach is not predicated on any specific model, and thus can be applied to a wide range of SOTA flow estimation model designs. The use of these DEQ flow estimators allows us to compute the flow faster using, e.g., fixed-point reuse and inexact gradients, consumes $4\sim6\times$ times less training memory than the recurrent counterpart, and achieves better results with the same computation budget. In addition, we propose a novel, sparse fixed-point correction scheme to stabilize our DEQ flow estimators, which addresses a longstanding challenge for DEQ models in general. We test our approach in various realistic settings and show that it improves SOTA methods on Sintel and KITTI datasets with substantially better computational and memory efficiency.

SVD (singular value decomposition) is one of the basic tools of machine learning, allowing to optimize basis for a given matrix. However, sometimes we have a set of matrices $\{A_k\}_k$ instead, and would like to optimize a single common basis for them: find orthogonal matrices $U$, $V$, such that $\{U^T A_k V\}$ set of matrices is somehow simpler. For example DCT-II is orthonormal basis of functions commonly used in image/video compression - as discussed here, this kind of basis can be quickly automatically optimized for a given dataset. While also discussed gradient descent optimization might be computationally costly, there is proposed CSVD (common SVD): fast general approach based on SVD. Specifically, we choose $U$ as built of eigenvectors of $\sum_i (w_k)^q (A_k A_k^T)^p$ and $V$ of $\sum_k (w_k)^q (A_k^T A_k)^p$, where $w_k$ are their weights, $p,q>0$ are some chosen powers e.g. 1/2, optionally with normalization e.g. $A \to A - rc^T$ where $r_i=\sum_j A_{ij}, c_j =\sum_i A_{ij}$.

In this paper, we introduce reduced-bias estimators for the estimation of the tail index of a Pareto-type distribution. This is achieved through the use of a regularised weighted least squares with an exponential regression model for log-spacings of top order statistics. The asymptotic properties of the proposed estimators are investigated analytically and found to be asymptotically unbiased, consistent and normally distributed. Also, the finite sample behaviour of the estimators are studied through a simulations theory. The proposed estimators were found to yield low bias and MSE. In addition, the proposed estimators are illustrated through the estimation of the tail index of the underlying distribution of claims from the insurance industry.

We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system+bath) is held in canonical thermal equilibrium by weak coupling with a "super-bath". Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long-range interaction systems.

The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

We provide a new analysis of local SGD, removing unnecessary assumptions and elaborating on the difference between two data regimes: identical and heterogeneous. In both cases, we improve the existing theory and provide values of the optimal stepsize and optimal number of local iterations. Our bounds are based on a new notion of variance that is specific to local SGD methods with different data. The tightness of our results is guaranteed by recovering known statements when we plug $H=1$, where $H$ is the number of local steps. The empirical evidence further validates the severe impact of data heterogeneity on the performance of local SGD.

We present a new sublinear time algorithm for approximating the spectral density (eigenvalue distribution) of an $n\times n$ normalized graph adjacency or Laplacian matrix. The algorithm recovers the spectrum up to $\epsilon$ accuracy in the Wasserstein-1 distance in $O(n\cdot \text{poly}(1/\epsilon))$ time given sample access to the graph. This result compliments recent work by David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant (2018), which obtains a solution with runtime independent of $n$, but exponential in $1/\epsilon$. We conjecture that the trade-off between dimension dependence and accuracy is inherent. Our method is simple and works well experimentally. It is based on a Chebyshev polynomial moment matching method that employees randomized estimators for the matrix trace. We prove that, for any Hermitian $A$, this moment matching method returns an $\epsilon$ approximation to the spectral density using just $O({1}/{\epsilon})$ matrix-vector products with $A$. By leveraging stability properties of the Chebyshev polynomial three-term recurrence, we then prove that the method is amenable to the use of coarse approximate matrix-vector products. Our sublinear time algorithm follows from combining this result with a novel sampling algorithm for approximating matrix-vector products with a normalized graph adjacency matrix. Of independent interest, we show a similar result for the widely used \emph{kernel polynomial method} (KPM), proving that this practical algorithm nearly matches the theoretical guarantees of our moment matching method. Our analysis uses tools from Jackson's seminal work on approximation with positive polynomial kernels.

北京阿比特科技有限公司