Multi-label classification (MLC) faces challenges from label noise in training data due to annotating diverse semantic labels for each image. Current methods mainly target identifying and correcting label mistakes using trained MLC models, but still struggle with persistent noisy labels during training, resulting in imprecise recognition and reduced performance. Our paper addresses label noise in MLC by introducing a positive and unlabeled multi-label classification (PU-MLC) method. To counteract noisy labels, we directly discard negative labels, focusing on the abundance of negative labels and the origin of most noisy labels. PU-MLC employs positive-unlabeled learning, training the model with only positive labels and unlabeled data. The method incorporates adaptive re-balance factors and temperature coefficients in the loss function to address label distribution imbalance and prevent over-smoothing of probabilities during training. Additionally, we introduce a local-global convolution module to capture both local and global dependencies in the image without requiring backbone retraining. PU-MLC proves effective on MLC and MLC with partial labels (MLC-PL) tasks, demonstrating significant improvements on MS-COCO and PASCAL VOC datasets with fewer annotations. Code is available at: //github.com/TAKELAMAG/PU-MLC.
Current facial expression recognition (FER) models are often designed in a supervised learning manner thus are constrained by the lack of large-scale facial expression images with high-quality annotations. Consequently, these models often fail to generalize well, performing poorly on unseen images in training. Vision-language-based zero-shot models demonstrate a promising potential for addressing such challenges. However, these models lack task-specific knowledge therefore are not optimized for the nuances of recognizing facial expressions. To bridge this gap, this work proposes a novel method, Exp-CLIP, to enhance zero-shot FER by transferring the task knowledge from large language models (LLMs). Specifically, based on the pre-trained vision-language encoders, we incorporate a projection head designed to map the initial joint vision-language space into a space that captures representations of facial actions. To train this projection head for subsequent zero-shot predictions, we propose to align the projected visual representations with task-specific semantic meanings derived from the LLM encoder, and the text instruction-based strategy is employed to customize the LLM knowledge. Given unlabelled facial data and efficient training of the projection head, Exp-CLIP achieves superior zero-shot results to the CLIP models and several other large vision-language models (LVLMs) on seven in-the-wild FER datasets. The code and pre-trained models are available at \url{//github.com/zengqunzhao/Exp-CLIP}.
Editing signals using large pre-trained models, in a zero-shot manner, has recently seen rapid advancements in the image domain. However, this wave has yet to reach the audio domain. In this paper, we explore two zero-shot editing techniques for audio signals, which use DDPM inversion with pre-trained diffusion models. The first, which we coin ZEro-shot Text-based Audio (ZETA) editing, is adopted from the image domain. The second, named ZEro-shot UnSupervized (ZEUS) editing, is a novel approach for discovering semantically meaningful editing directions without supervision. When applied to music signals, this method exposes a range of musically interesting modifications, from controlling the participation of specific instruments to improvisations on the melody. Samples and code can be found in //hilamanor.github.io/AudioEditing/ .
Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. This approach includes the efficient expansion of vocabulary by integrating the most frequently used Chinese characters into CLIP's tokenizer and embedding layers, coupled with an absolute position encoding expansion. Additionally, we enrich text prompts by large vision-language model, leading to better images captions and possess higher visual quality. These enhancements are subsequently applied to downstream text-to-image models. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications. This contribution is a step forward in addressing the need for more diverse language support in multimodal research. The model and demonstration are made publicly available at \href{//huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-XL-3.5B/}{this https URL}, fostering further research and collaboration in this domain.
Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at //mathis.petrovich.fr/stmc.
The verification throughput is becoming a major challenge bottleneck, since the complexity and size of SoC designs are still ever increasing. Simply adding more CPU cores and running more tests in parallel will not scale anymore. This paper discusses various methods of improving verification throughput: ranking and the new machine learning (ML) based technology introduced by Cadence i.e. Xcelium ML. Both methods aim at getting comparable coverage in less CPU time by applying more efficient stimulus. Ranking selects specific seeds that simply turned out to come up with the largest coverage in previous simulations, while Xcelium ML generates optimized patterns as a result of finding correlations between randomization points and achieved coverage of previous regressions. Quantified results as well as pros & cons of each approach are discussed in this paper at the example of three actual industry projects. Both Xcelium ML and Ranking methods gave comparable compression & speedup factors around 3 consistently. But the optimized ML based regressions simulated new random scenarios occasionally producing a coverage regain of more than 100%. Finally, a methodology is proposed to use Xcelium ML efficiently throughout the product development.
Time series anomaly detection (TSAD) plays a crucial role in various industries by identifying atypical patterns that deviate from standard trends, thereby maintaining system integrity and enabling prompt response measures. Traditional TSAD models, which often rely on deep learning, require extensive training data and operate as black boxes, lacking interpretability for detected anomalies. To address these challenges, we propose LLMAD, a novel TSAD method that employs Large Language Models (LLMs) to deliver accurate and interpretable TSAD results. LLMAD innovatively applies LLMs for in-context anomaly detection by retrieving both positive and negative similar time series segments, significantly enhancing LLMs' effectiveness. Furthermore, LLMAD employs the Anomaly Detection Chain-of-Thought (AnoCoT) approach to mimic expert logic for its decision-making process. This method further enhances its performance and enables LLMAD to provide explanations for their detections through versatile perspectives, which are particularly important for user decision-making. Experiments on three datasets indicate that our LLMAD achieves detection performance comparable to state-of-the-art deep learning methods while offering remarkable interpretability for detections. To the best of our knowledge, this is the first work that directly employs LLMs for TSAD.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.