亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We perform an error analysis of a fully discretised Streamline Upwind Petrov Galerkin Dynamical Low Rank (SUPG-DLR) method for random time-dependent advection-dominated problems. The time integration scheme has a splitting-like nature, allowing for potentially efficient computations of the factors characterising the discretised random field. The method allows to efficiently compute a low-rank approximation of the true solution, while naturally "inbuilding" the SUPG stabilisation. Standard error rates in the L2 and SUPG-norms are recovered. Numerical experiments validate the predicted rates.

相關內容

With the rapid development of generative models, Artificial Intelligence-Generated Contents (AIGC) have exponentially increased in daily lives. Among them, Text-to-Video (T2V) generation has received widespread attention. Though many T2V models have been released for generating high perceptual quality videos, there is still lack of a method to evaluate the quality of these videos quantitatively. To solve this issue, we establish the largest-scale Text-to-Video Quality Assessment DataBase (T2VQA-DB) to date. The dataset is composed of 10,000 videos generated by 9 different T2V models. We also conduct a subjective study to obtain each video's corresponding mean opinion score. Based on T2VQA-DB, we propose a novel transformer-based model for subjective-aligned Text-to-Video Quality Assessment (T2VQA). The model extracts features from text-video alignment and video fidelity perspectives, then it leverages the ability of a large language model to give the prediction score. Experimental results show that T2VQA outperforms existing T2V metrics and SOTA video quality assessment models. Quantitative analysis indicates that T2VQA is capable of giving subjective-align predictions, validating its effectiveness. The dataset and code will be released at //github.com/QMME/T2VQA.

Reference-based metrics such as BLEU and BERTScore are widely used to evaluate question generation (QG). In this study, on QG benchmarks such as SQuAD and HotpotQA, we find that using human-written references cannot guarantee the effectiveness of the reference-based metrics. Most QG benchmarks have only one reference; we replicated the annotation process and collect another reference. A good metric was expected to grade a human-validated question no worse than generated questions. However, the results of reference-based metrics on our newly collected reference disproved the metrics themselves. We propose a reference-free metric consisted of multi-dimensional criteria such as naturalness, answerability, and complexity, utilizing large language models. These criteria are not constrained to the syntactic or semantic of a single reference question, and the metric does not require a diverse set of references. Experiments reveal that our metric accurately distinguishes between high-quality questions and flawed ones, and achieves state-of-the-art alignment with human judgment.

This study tackles the efficient estimation of Kullback-Leibler (KL) Divergence in Dirichlet Mixture Models (DMM), crucial for clustering compositional data. Despite the significance of DMMs, obtaining an analytically tractable solution for KL Divergence has proven elusive. Past approaches relied on computationally demanding Monte Carlo methods, motivating our introduction of a novel variational approach. Our method offers a closed-form solution, significantly enhancing computational efficiency for swift model comparisons and robust estimation evaluations. Validation using real and simulated data showcases its superior efficiency and accuracy over traditional Monte Carlo-based methods, opening new avenues for rapid exploration of diverse DMM models and advancing statistical analyses of compositional data.

Personalized Federated Learning (PFL) is widely employed in IoT applications to handle high-volume, non-iid client data while ensuring data privacy. However, heterogeneous edge devices owned by clients may impose varying degrees of resource constraints, causing computation and communication bottlenecks for PFL. Federated Dropout has emerged as a popular strategy to address this challenge, wherein only a subset of the global model, i.e. a \textit{sub-model}, is trained on a client's device, thereby reducing computation and communication overheads. Nevertheless, the dropout-based model-pruning strategy may introduce bias, particularly towards non-iid local data. When biased sub-models absorb highly divergent parameters from other clients, performance degradation becomes inevitable. In response, we propose federated learning with stochastic parameter update (FedSPU). Unlike dropout that tailors the global model to small-size local sub-models, FedSPU maintains the full model architecture on each device but randomly freezes a certain percentage of neurons in the local model during training while updating the remaining neurons. This approach ensures that a portion of the local model remains personalized, thereby enhancing the model's robustness against biased parameters from other clients. Experimental results demonstrate that FedSPU outperforms federated dropout by 7.57\% on average in terms of accuracy. Furthermore, an introduced early stopping scheme leads to a significant reduction of the training time by \(24.8\%\sim70.4\%\) while maintaining high accuracy.

Instruction tuning effectively optimizes Large Language Models (LLMs) for downstream tasks. Due to the changing environment in real-life applications, LLMs necessitate continual task-specific adaptation without catastrophic forgetting. Considering the heavy computational cost, replay-based Continual Learning (CL) methods are the simplest and most widely used for LLMs to address the forgetting issue. However, traditional replay-based methods do not fully utilize instructions to customize the replay strategy. In this work, we propose a novel paradigm called Instruction-based Continual Learning (InsCL). InsCL dynamically replays previous data based on task similarity, calculated by Wasserstein Distance with instructions. Moreover, we further introduce an Instruction Information Metric (InsInfo) to quantify the complexity and diversity of instructions. According to InsInfo, InsCL guides the replay process more inclined to high-quality data. We conduct extensive experiments over 16 tasks with different training orders, observing consistent performance improvements of InsCL. When all tasks have been trained, InsCL achieves performance gains of 3.0 Relative Gain compared with Random Replay, and 27.96 Relative Gain compared with No Replay.

Despite the success of Quantum Neural Networks (QNNs) in decision-making systems, their fairness remains unexplored, as the focus primarily lies on accuracy. This work conducts a design space exploration, unveiling QNN unfairness, and highlighting the significant influence of QNN deployment and quantum noise on accuracy and fairness. To effectively navigate the vast QNN deployment design space, we propose JustQ, a framework for deploying fair and accurate QNNs on NISQ computers. It includes a complete NISQ error model, reinforcement learning-based deployment, and a flexible optimization objective incorporating both fairness and accuracy. Experimental results show JustQ outperforms previous methods, achieving superior accuracy and fairness. This work pioneers fair QNN design on NISQ computers, paving the way for future investigations.

Variational quantum circuits (VQCs) have become a powerful tool for implementing Quantum Neural Networks (QNNs), addressing a wide range of complex problems. Well-trained VQCs serve as valuable intellectual assets hosted on cloud-based Noisy Intermediate Scale Quantum (NISQ) computers, making them susceptible to malicious VQC stealing attacks. However, traditional model extraction techniques designed for classical machine learning models encounter challenges when applied to NISQ computers due to significant noise in current devices. In this paper, we introduce QuantumLeak, an effective and accurate QNN model extraction technique from cloud-based NISQ machines. Compared to existing classical model stealing techniques, QuantumLeak improves local VQC accuracy by 4.99\%$\sim$7.35\% across diverse datasets and VQC architectures.

A novel method, the Pareto Envelope Augmented with Reinforcement Learning (PEARL), has been developed to address the challenges posed by multi-objective problems, particularly in the field of engineering where the evaluation of candidate solutions can be time-consuming. PEARL distinguishes itself from traditional policy-based multi-objective Reinforcement Learning methods by learning a single policy, eliminating the need for multiple neural networks to independently solve simpler sub-problems. Several versions inspired from deep learning and evolutionary techniques have been crafted, catering to both unconstrained and constrained problem domains. Curriculum Learning is harnessed to effectively manage constraints in these versions. PEARL's performance is first evaluated on classical multi-objective benchmarks. Additionally, it is tested on two practical PWR core Loading Pattern optimization problems to showcase its real-world applicability. The first problem involves optimizing the Cycle length and the rod-integrated peaking factor as the primary objectives, while the second problem incorporates the mean average enrichment as an additional objective. Furthermore, PEARL addresses three types of constraints related to boron concentration, peak pin burnup, and peak pin power. The results are systematically compared against conventional approaches. Notably, PEARL, specifically the PEARL-NdS variant, efficiently uncovers a Pareto front without necessitating additional efforts from the algorithm designer, as opposed to a single optimization with scaled objectives. It also outperforms the classical approach across multiple performance metrics, including the Hyper-volume.

Knowledge Measures (KMs) aim at quantifying the amount of knowledge/information that a knowledge base carries. On the other hand, Belief Change (BC) is the process of changing beliefs (in our case, in terms of contraction, expansion and revision) taking into account a new piece of knowledge, which possibly may be in contradiction with the current belief. We propose a new quantitative BC framework that is based on KMs by defining belief change operators that try to minimise, from an information-theoretic point of view, the surprise that the changed belief carries. To this end, we introduce the principle of minimal surprise. In particular, our contributions are (i) a general information-theoretic approach to KMs for which [1] is a special case; (ii) KM-based BC operators that satisfy the so-called AGM postulates; and (iii) a characterisation of any BC operator that satisfies the AGM postulates as a KM-based BC operator, i.e., any BC operator satisfying the AGM postulates can be encoded within our quantitative BC framework. We also introduce quantitative measures that account for the information loss of contraction, information gain of expansion and information change of revision. We also give a succinct look into the problem of iterated revision, which deals with the application of a sequence of revision operations in our framework, and also illustrate how one may build from our KM-based contraction operator also one not satisfying the (in)famous recovery postulate, by focusing on the so-called severe withdrawal model as an illustrative example.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司