Emerging autonomous farming techniques rely on smart devices such as multi-spectral cameras, collecting fine-grained data, and robots performing tasks such as de-weeding, berry-picking, etc. These techniques require a high throughput network, supporting 10s of Mbps per device at the scale of tens to hundreds of devices in a large farm. We conduct a survey across 12 agronomists to understand these networking requirements of farm workloads and perform extensive measurements of WiFi 6 performance in a farm to identify the challenges in meeting them. Our measurements reveal how network capacity is fundamentally limited in such a setting, with severe degradation in network performance due to crop canopy, and spotlight farm networks as an emerging new problem domain that can benefit from smarter network resource management decisions. To that end, we design Cornet, a network for supporting on-farm applications that comprises: (i) a multi-hop mesh of WiFi routers that uses a strategic combination of 2.4GHz and 5GHz bands as informed by our measurements, and (ii) a centralized traffic engineering (TE) system that uses a novel abstraction of resource units to reason about wireless network capacity and make TE decisions (schedule flows, assign flow rates, and select routes and channels). Our evaluation, using testbeds in a farm and trace-driven simulations, shows how Cornet achieves 1.4 $\times$ higher network utilization and better meets application demands, compared to standard wireless mesh strategies.
Multi-view compression technology, especially Stereo Image Compression (SIC), plays a crucial role in car-mounted cameras and 3D-related applications. Interestingly, the Distributed Source Coding (DSC) theory suggests that efficient data compression of correlated sources can be achieved through independent encoding and joint decoding. This motivates the rapidly developed deep-distributed SIC methods in recent years. However, these approaches neglect the unique characteristics of stereo-imaging tasks and incur high decoding latency. To address this limitation, we propose a Feature-based Fast Cascade Alignment network (FFCA-Net) to fully leverage the side information on the decoder. FFCA adopts a coarse-to-fine cascaded alignment approach. In the initial stage, FFCA utilizes a feature domain patch-matching module based on stereo priors. This module reduces redundancy in the search space of trivial matching methods and further mitigates the introduction of noise. In the subsequent stage, we utilize an hourglass-based sparse stereo refinement network to further align inter-image features with a reduced computational cost. Furthermore, we have devised a lightweight yet high-performance feature fusion network, called a Fast Feature Fusion network (FFF), to decode the aligned features. Experimental results on InStereo2K, KITTI, and Cityscapes datasets demonstrate the significant superiority of our approach over traditional and learning-based SIC methods. In particular, our approach achieves significant gains in terms of 3 to 10-fold faster decoding speed than other methods.
With the increasing demand for mobile robots and autonomous vehicles, several approaches for long-term robot navigation have been proposed. Among these techniques, ground segmentation and traversability estimation play important roles in perception and path planning, respectively. Even though these two techniques appear similar, their objectives are different. Ground segmentation divides data into ground and non-ground elements; thus, it is used as a preprocessing stage to extract objects of interest by rejecting ground points. In contrast, traversability estimation identifies and comprehends areas in which robots can move safely. Nevertheless, some researchers use these terms without clear distinction, leading to misunderstanding the two concepts. Therefore, in this study, we survey related literature and clearly distinguish ground and traversable regions considering four aspects: a) maneuverability of robot platforms, b) position of a robot in the surroundings, c) subset relation of negative obstacles, and d) subset relation of deformable objects.
Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.