亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel metric to analyze the similarity between the physical environment and the virtual environment for natural walking in virtual reality. Our approach is general and can be applied to any pair of physical and virtual environments. We use geometric techniques based on conforming constrained Delaunay triangulations and visibility polygons to compute the Environment Navigation Incompatibility (ENI) metric that can be used to measure the complexity of performing simultaneous navigation. We demonstrate applications of ENI for highlighting regions of incompatibility for a pair of environments, guiding the design of the virtual environments to make them more compatible with a fixed physical environment, and evaluating the performance of different redirected walking controllers. We validate the ENI metric using simulations and two user studies. Results of our simulations and user studies show that in the environment pair that our metric identified as more navigable, users were able to walk for longer before colliding with objects in the physical environment. Overall, ENI is the first general metric that can automatically identify regions of high and low compatibility in physical and virtual environments. Our project website is available at //gamma.umd.edu/eni/.

相關內容

Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.

We introduce a new constrained optimization method for policy gradient reinforcement learning, which uses two trust regions to regulate each policy update. In addition to using the proximity of one single old policy as the first trust region as done by prior works, we propose to form a second trust region through the construction of another virtual policy that represents a wide range of past policies. We then enforce the new policy to stay closer to the virtual policy, which is beneficial in case the old policy performs badly. More importantly, we propose a mechanism to automatically build the virtual policy from a memory buffer of past policies, providing a new capability for dynamically selecting appropriate trust regions during the optimization process. Our proposed method, dubbed as Memory-Constrained Policy Optimization (MCPO), is examined on a diverse suite of environments including robotic locomotion control, navigation with sparse rewards and Atari games, consistently demonstrating competitive performance against recent on-policy constrained policy gradient methods.

In the past ten years there have been significant developments in optimization of transcoding parameters on a per-clip rather than per-genre basis. In our recent work we have presented per-clip optimization for the Lagrangian multiplier in Rate controlled compression, which yielded BD-Rate improvements of approximately 2\% across a corpus of videos using HEVC. However, in a video streaming application, the focus is on optimizing the rate/distortion tradeoff at a particular bitrate and not on average across a range of performance. We observed in previous work that a particular multiplier might give BD rate improvements over a certain range of bitrates, but not the entire range. Using different parameters across the range would improve gains overall. Therefore here we present a framework for choosing the best Lagrangian multiplier on a per-operating point basis across a range of bitrates. In effect, we are trying to find the para-optimal gain across bitrate and distortion for a single clip. In the experiments presented we employ direct optimization techniques to estimate this Lagrangian parameter path approximately 2,000 video clips. The clips are primarily from the YouTube-UGC dataset. We optimize both for bitrate savings as well as distortion metrics (PSNR, SSIM).

Embodied AI is a recent research area that aims at creating intelligent agents that can move and operate inside an environment. Existing approaches in this field demand the agents to act in completely new and unexplored scenes. However, this setting is far from realistic use cases that instead require executing multiple tasks in the same environment. Even if the environment changes over time, the agent could still count on its global knowledge about the scene while trying to adapt its internal representation to the current state of the environment. To make a step towards this setting, we propose Spot the Difference: a novel task for Embodied AI where the agent has access to an outdated map of the environment and needs to recover the correct layout in a fixed time budget. To this end, we collect a new dataset of occupancy maps starting from existing datasets of 3D spaces and generating a number of possible layouts for a single environment. This dataset can be employed in the popular Habitat simulator and is fully compliant with existing methods that employ reconstructed occupancy maps during navigation. Furthermore, we propose an exploration policy that can take advantage of previous knowledge of the environment and identify changes in the scene faster and more effectively than existing agents. Experimental results show that the proposed architecture outperforms existing state-of-the-art models for exploration on this new setting.

With the rapid development of multimedia technology, Augmented Reality (AR) has become a promising next-generation mobile platform. The primary theory underlying AR is human visual confusion, which allows users to perceive the real-world scenes and augmented contents (virtual-world scenes) simultaneously by superimposing them together. To achieve good Quality of Experience (QoE), it is important to understand the interaction between two scenarios, and harmoniously display AR contents. However, studies on how this superimposition will influence the human visual attention are lacking. Therefore, in this paper, we mainly analyze the interaction effect between background (BG) scenes and AR contents, and study the saliency prediction problem in AR. Specifically, we first construct a Saliency in AR Dataset (SARD), which contains 450 BG images, 450 AR images, as well as 1350 superimposed images generated by superimposing BG and AR images in pair with three mixing levels. A large-scale eye-tracking experiment among 60 subjects is conducted to collect eye movement data. To better predict the saliency in AR, we propose a vector quantized saliency prediction method and generalize it for AR saliency prediction. For comparison, three benchmark methods are proposed and evaluated together with our proposed method on our SARD. Experimental results demonstrate the superiority of our proposed method on both of the common saliency prediction problem and the AR saliency prediction problem over benchmark methods. Our data collection methodology, dataset, benchmark methods, and proposed saliency models will be publicly available to facilitate future research.

The similarity between a pair of time series, i.e., sequences of indexed values in time order, is often estimated by the dynamic time warping (DTW) distance, instead of any in the well-studied family of measures including the longest common subsequence (LCS) length and the edit distance. Although it may seem as if the DTW and the LCS(-like) measures are essentially different, we reveal that the DTW distance can be represented by the longest increasing subsequence (LIS) length of a sequence of integers, which is the LCS length between the integer sequence and itself sorted. For a given pair of time series of length $n$ such that the dissimilarity between any elements is an integer between zero and $c$, we propose an integer sequence that represents any substring-substring DTW distance as its band-substring LIS length. The length of the produced integer sequence is $O(c n^2)$, which can be translated to $O(n^2)$ for constant dissimilarity functions. To demonstrate that techniques developed under the LCS(-like) measures are directly applicable to analysis of time series via our reduction of DTW to LIS, we present time-efficient algorithms for DTW-related problems utilizing the semi-local sequence comparison technique developed for LCS-related problems.

The ethical design of social Virtual Reality (VR) is not a new topic, but "safety" concerns of using social VR are escalated to a different level given the heat of the Metaverse. For example, it was reported that nearly half of the female-identifying VR participants have had at least one instance of virtual sexual harassment. Feeling safe is a basic human right - in any place, regardless in real or virtual spaces. In this paper, we are seeking to understand the discrepancy between user concerns and designs in protecting user safety in social VR applications. We study safety concerns on social VR experience first by analyzing Twitter posts and then synthesize practices on safety protection adopted by four mainstream social VR platforms. We argue that future research and platforms should explore the design of social VR with boundary-awareness.

In this work, we develop quantization and variable-length source codecs for the feedback links in linear-quadratic-Gaussian (LQG) control systems. We prove that for any fixed control performance, the approaches we propose nearly achieve lower bounds on communication cost that have been established in prior work. In particular, we refine the analysis of a classical achievability approach with an eye towards more practical details. Notably, in the prior literature the source codecs used to demonstrate the (near) achievability of these lower bounds are often implicitly assumed to be time-varying. For single-input single-output (SISO) plants, we prove that it suffices to consider time-invariant quantization and source coding. This result follows from analyzing the long-term stochastic behavior of the system's quantized measurements and reconstruction errors. To our knowledge, this time-invariant achievability result is the first in the literature.

We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.

Attention is an increasingly popular mechanism used in a wide range of neural architectures. Because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures for natural language processing, with a focus on architectures designed to work with vector representation of the textual data. We discuss the dimensions along which proposals differ, the possible uses of attention, and chart the major research activities and open challenges in the area.

北京阿比特科技有限公司