The similarity between a pair of time series, i.e., sequences of indexed values in time order, is often estimated by the dynamic time warping (DTW) distance, instead of any in the well-studied family of measures including the longest common subsequence (LCS) length and the edit distance. Although it may seem as if the DTW and the LCS(-like) measures are essentially different, we reveal that the DTW distance can be represented by the longest increasing subsequence (LIS) length of a sequence of integers, which is the LCS length between the integer sequence and itself sorted. For a given pair of time series of length $n$ such that the dissimilarity between any elements is an integer between zero and $c$, we propose an integer sequence that represents any substring-substring DTW distance as its band-substring LIS length. The length of the produced integer sequence is $O(c n^2)$, which can be translated to $O(n^2)$ for constant dissimilarity functions. To demonstrate that techniques developed under the LCS(-like) measures are directly applicable to analysis of time series via our reduction of DTW to LIS, we present time-efficient algorithms for DTW-related problems utilizing the semi-local sequence comparison technique developed for LCS-related problems.
The free-form deformation model can represent a wide range of non-rigid deformations by manipulating a control point lattice over the image. However, due to a large number of parameters, it is challenging to fit the free-form deformation model directly to the deformed image for deformation estimation because of the complexity of the fitness landscape. In this paper, we cast the registration task as a multi-objective optimization problem (MOP) according to the fact that regions affected by each control point overlap with each other. Specifically, by partitioning the template image into several regions and measuring the similarity of each region independently, multiple objectives are built and deformation estimation can thus be realized by solving the MOP with off-the-shelf multi-objective evolutionary algorithms (MOEAs). In addition, a coarse-to-fine strategy is realized by image pyramid combined with control point mesh subdivision. Specifically, the optimized candidate solutions of the current image level are inherited by the next level, which increases the ability to deal with large deformation. Also, a post-processing procedure is proposed to generate a single output utilizing the Pareto optimal solutions. Comparative experiments on both synthetic and real-world images show the effectiveness and usefulness of our deformation estimation method.
We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.
Information about action costs is critical for real-world AI planning applications. Rather than rely solely on declarative action models, recent approaches also use black-box external action cost estimators, often learned from data, that are applied during the planning phase. These, however, can be computationally expensive, and produce uncertain values. In this paper we suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost, to balance computation time against bounded estimation uncertainty. This enables a much richer -- and correspondingly more realistic -- problem representation. Importantly, it allows planners to bound plan accuracy, thereby increasing reliability, while reducing unnecessary computational burden, which is critical for scaling to large problems. We introduce a search algorithm, generalizing $A^*$, that solves such planning problems, and additional algorithmic extensions. In addition to theoretical guarantees, extensive experiments show considerable savings in runtime compared to alternatives.
Efficient sampling and remote estimation are critical for a plethora of wireless-empowered applications in the Internet of Things and cyber-physical systems. Motivated by such applications, this work proposes decentralized policies for the real-time monitoring and estimation of autoregressive processes over random access channels. Two classes of policies are investigated: (i) oblivious schemes in which sampling and transmission policies are independent of the processes that are monitored, and (ii) non-oblivious schemes in which transmitters causally observe their corresponding processes for decision making. In the class of oblivious policies, we show that minimizing the expected time-average estimation error is equivalent to minimizing the expected age of information. Consequently, we prove lower and upper bounds on the minimum achievable estimation error in this class. Next, we consider non-oblivious policies and design a threshold policy, called error-based thinning, in which each source node becomes active if its instantaneous error has crossed a fixed threshold (which we optimize). Active nodes then transmit stochastically following a slotted ALOHA policy. A closed-form, approximately optimal, solution is found for the threshold as well as the resulting estimation error. It is shown that non-oblivious policies offer a multiplicative gain close to $3$ compared to oblivious policies. Moreover, it is shown that oblivious policies that use the age of information for decision making improve the state-of-the-art at least by the multiplicative factor $2$. The performance of all discussed policies is compared using simulations. The numerical comparison shows that the performance of the proposed decentralized policy is very close to that of centralized greedy scheduling.
A motif intuitively is a short time series that repeats itself approximately the same within a larger time series. Such motifs often represent concealed structures, such as heart beats in an ECG recording, or sleep spindles in EEG sleep data. Motif discovery (MD) is the task of finding such motifs in a given input series. As there are varying definitions of what exactly a motif is, a number of algorithms exist. As central parameters they all take the length l of the motif and the maximal distance r between the motif's occurrences. In practice, however, suitable values for r are very hard to determine upfront, and the found motifs show a high variability. Setting the wrong input value will result in a motif that is not distinguishable from noise. Accordingly, finding an interesting motif with these methods requires extensive trial-and-error. We present a different approach to the MD problem. We define k-Motiflets as the set of exactly k occurrences of a motif of length l, whose maximum pairwise distance is minimal. This turns the MD problem upside-down: Our central parameter is not the distance threshold r, but the desired size k of a motif set, which we show is considerably more intuitive and easier to set. Based on this definition, we present exact and approximate algorithms for finding k-Motiflets and analyze their complexity. To further ease the use of our method, we describe extensions to automatically determine the right/suitable values for its input parameters. Thus, for the first time, extracting meaningful motif sets without any a-priori knowledge becomes feasible. By evaluating real-world use cases and comparison to 4 state-of-the-art MD algorithms, we show that our proposed algorithm is (a) quantitatively superior, finding larger motif sets at higher similarity, (b) qualitatively better, leading to clearer and easier to interpret motifs, and (c) has the lowest runtime.
We introduce SubGD, a novel few-shot learning method which is based on the recent finding that stochastic gradient descent updates tend to live in a low-dimensional parameter subspace. In experimental and theoretical analyses, we show that models confined to a suitable predefined subspace generalize well for few-shot learning. A suitable subspace fulfills three criteria across the given tasks: it (a) allows to reduce the training error by gradient flow, (b) leads to models that generalize well, and (c) can be identified by stochastic gradient descent. SubGD identifies these subspaces from an eigendecomposition of the auto-correlation matrix of update directions across different tasks. Demonstrably, we can identify low-dimensional suitable subspaces for few-shot learning of dynamical systems, which have varying properties described by one or few parameters of the analytical system description. Such systems are ubiquitous among real-world applications in science and engineering. We experimentally corroborate the advantages of SubGD on three distinct dynamical systems problem settings, significantly outperforming popular few-shot learning methods both in terms of sample efficiency and performance.
We present SHRED, a method for 3D SHape REgion Decomposition. SHRED takes a 3D point cloud as input and uses learned local operations to produce a segmentation that approximates fine-grained part instances. We endow SHRED with three decomposition operations: splitting regions, fixing the boundaries between regions, and merging regions together. Modules are trained independently and locally, allowing SHRED to generate high-quality segmentations for categories not seen during training. We train and evaluate SHRED with fine-grained segmentations from PartNet; using its merge-threshold hyperparameter, we show that SHRED produces segmentations that better respect ground-truth annotations compared with baseline methods, at any desired decomposition granularity. Finally, we demonstrate that SHRED is useful for downstream applications, out-performing all baselines on zero-shot fine-grained part instance segmentation and few-shot fine-grained semantic segmentation when combined with methods that learn to label shape regions.
In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.
The crude Monte Carlo approximates the integral $$S(f)=\int_a^b f(x)\,\mathrm dx$$ with expected error (deviation) $\sigma(f)N^{-1/2},$ where $\sigma(f)^2$ is the variance of $f$ and $N$ is the number of random samples. If $f\in C^r$ then special variance reduction techniques can lower this error to the level $N^{-(r+1/2)}.$ In this paper, we consider methods of the form $$\overline M_{N,r}(f)=S(L_{m,r}f)+M_n(f-L_{m,r}f),$$ where $L_{m,r}$ is the piecewise polynomial interpolation of $f$ of degree $r-1$ using a partition of the interval $[a,b]$ into $m$ subintervals, $M_n$ is a Monte Carlo approximation using $n$ samples of $f,$ and $N$ is the total number of function evaluations used. We derive asymptotic error formulas for the methods $\overline M_{N,r}$ that use nonadaptive as well as adaptive partitions. Although the convergence rate $N^{-(r+1/2)}$ cannot be beaten, the asymptotic constants make a huge difference. For example, for $\int_0^1(x+d)^{-1}\mathrm dx$ and $r=4$ the best adaptive methods overcome the nonadaptive ones roughly $10^{12}$ times if $d=10^{-4},$ and $10^{29}$ times if $d=10^{-8}.$ In addition, the proposed adaptive methods are easily implementable and can be well used for automatic integration. We believe that the obtained results can be generalized to multivariate integration.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.