We propose a new concept of codivergence, which quantifies the similarity between two probability measures $P_1, P_2$ relative to a reference probability measure $P_0$. In the neighborhood of the reference measure $P_0$, a codivergence behaves like an inner product between the measures $P_1 - P_0$ and $P_2 - P_0$. Codivergences of covariance-type and correlation-type are introduced and studied with a focus on two specific correlation-type codivergences, the $\chi^2$-codivergence and the Hellinger codivergence. We derive explicit expressions for several common parametric families of probability distributions. For a codivergence, we introduce moreover the divergence matrix as an analogue of the Gram matrix. It is shown that the $\chi^2$-divergence matrix satisfies a data-processing inequality.
Recently established, directed dependence measures for pairs $(X,Y)$ of random variables build upon the natural idea of comparing the conditional distributions of $Y$ given $X=x$ with the marginal distribution of $Y$. They assign pairs $(X,Y)$ values in $[0,1]$, the value is $0$ if and only if $X,Y$ are independent, and it is $1$ exclusively for $Y$ being a function of $X$. Here we show that comparing randomly drawn conditional distributions with each other instead or, equivalently, analyzing how sensitive the conditional distribution of $Y$ given $X=x$ is on $x$, opens the door to constructing novel families of dependence measures $\Lambda_\varphi$ induced by general convex functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, containing, e.g., Chatterjee's coefficient of correlation as special case. After establishing additional useful properties of $\Lambda_\varphi$ we focus on continuous $(X,Y)$, translate $\Lambda_\varphi$ to the copula setting, consider the $L^p$-version and establish an estimator which is strongly consistent in full generality. A real data example and a simulation study illustrate the chosen approach and the performance of the estimator. Complementing the afore-mentioned results, we show how a slight modification of the construction underlying $\Lambda_\varphi$ can be used to define new measures of explainability generalizing the fraction of explained variance.
We study the maximum-average submatrix problem, in which given an $N \times N$ matrix $J$ one needs to find the $k \times k$ submatrix with the largest average of entries. We study the problem for random matrices $J$ whose entries are i.i.d. random variables by mapping it to a variant of the Sherrington-Kirkpatrick spin-glass model at fixed magnetization. We characterize analytically the phase diagram of the model as a function of the submatrix average and the size of the submatrix $k$ in the limit $N\to\infty$. We consider submatrices of size $k = m N$ with $0 < m < 1$. We find a rich phase diagram, including dynamical, static one-step replica symmetry breaking and full-step replica symmetry breaking. In the limit of $m \to 0$, we find a simpler phase diagram featuring a frozen 1-RSB phase, where the Gibbs measure is composed of exponentially many pure states each with zero entropy. We discover an interesting phenomenon, reminiscent of the phenomenology of the binary perceptron: there exist efficient algorithms that provably work in the frozen 1-RSB phase.
We present a novel stabilized isogeometric formulation for the Stokes problem, where the geometry of interest is obtained via overlapping NURBS (non-uniform rational B-spline) patches, i.e., one patch on top of another in an arbitrary but predefined hierarchical order. All the visible regions constitute the computational domain, whereas independent patches are coupled through visible interfaces using Nitsche's formulation. Such a geometric representation inevitably involves trimming, which may yield trimmed elements of extremely small measures (referred to as bad elements) and thus lead to the instability issue. Motivated by the minimal stabilization method that rigorously guarantees stability for trimmed geometries [1], in this work we generalize it to the Stokes problem on overlapping patches. Central to our method is the distinct treatments for the pressure and velocity spaces: Stabilization for velocity is carried out for the flux terms on interfaces, whereas pressure is stabilized in all the bad elements. We provide a priori error estimates with a comprehensive theoretical study. Through a suite of numerical tests, we first show that optimal convergence rates are achieved, which consistently agrees with our theoretical findings. Second, we show that the accuracy of pressure is significantly improved by several orders using the proposed stabilization method, compared to the results without stabilization. Finally, we also demonstrate the flexibility and efficiency of the proposed method in capturing local features in the solution field.
A sequential pattern with negation, or negative sequential pattern, takes the form of a sequential pattern for which the negation symbol may be used in front of some of the pattern's itemsets. Intuitively, such a pattern occurs in a sequence if negated itemsets are absent in the sequence. Recent work has shown that different semantics can be attributed to these pattern forms, and that state-of-the-art algorithms do not extract the same sets of patterns. This raises the important question of the interpretability of sequential pattern with negation. In this study, our focus is on exploring how potential users perceive negation in sequential patterns. Our aim is to determine whether specific semantics are more "intuitive" than others and whether these align with the semantics employed by one or more state-of-the-art algorithms. To achieve this, we designed a questionnaire to reveal the semantics' intuition of each user. This article presents both the design of the questionnaire and an in-depth analysis of the 124 responses obtained. The outcomes indicate that two of the semantics are predominantly intuitive; however, neither of them aligns with the semantics of the primary state-of-the-art algorithms. As a result, we provide recommendations to account for this disparity in the conclusions drawn.
A set of vertices of a graph $G$ is said to be decycling if its removal leaves an acyclic subgraph. The size of a smallest decycling set is the decycling number of $G$. Generally, at least $\lceil(n+2)/4\rceil$ vertices have to be removed in order to decycle a cubic graph on $n$ vertices. In 1979, Payan and Sakarovitch proved that the decycling number of a cyclically $4$-edge-connected cubic graph of order $n$ equals $\lceil (n+2)/4\rceil$. In addition, they characterised the structure of minimum decycling sets and their complements. If $n\equiv 2\pmod4$, then $G$ has a decycling set which is independent and its complement induces a tree. If $n\equiv 0\pmod4$, then one of two possibilities occurs: either $G$ has an independent decycling set whose complement induces a forest of two trees, or the decycling set is near-independent (which means that it induces a single edge) and its complement induces a tree. In this paper we strengthen the result of Payan and Sakarovitch by proving that the latter possibility (a near-independent set and a tree) can always be guaranteed. Moreover, we relax the assumption of cyclic $4$-edge-connectivity to a significantly weaker condition expressed through the canonical decomposition of 3-connected cubic graphs into cyclically $4$-edge-connected ones. Our methods substantially use a surprising and seemingly distant relationship between the decycling number and the maximum genus of a cubic graph.
We make two contributions to the Isolation Forest method for anomaly and outlier detection. The first contribution is an information-theoretically motivated generalisation of the score function that is used to aggregate the scores across random tree estimators. This generalisation allows one to take into account not just the ensemble average across trees but instead the whole distribution. The second contribution is an alternative scoring function at the level of the individual tree estimator, in which we replace the depth-based scoring of the Isolation Forest with one based on hyper-volumes associated to an isolation tree's leaf nodes. We motivate the use of both of these methods on generated data and also evaluate them on 34 datasets from the recent and exhaustive ``ADBench'' benchmark, finding significant improvement over the standard isolation forest for both variants on some datasets and improvement on average across all datasets for one of the two variants. The code to reproduce our results is made available as part of the submission.
Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.
Parametric mathematical models such as parameterizations of partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the $L^2$ dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.
We study the behavior of a label propagation algorithm (LPA) on the Erd\H{o}s-R\'enyi random graph $\mathcal{G}(n,p)$. Initially, given a network, each vertex starts with a random label in the interval $[0,1]$. Then, in each round of LPA, every vertex switches its label to the majority label in its neighborhood (including its own label). At the first round, ties are broken towards smaller labels, while at each of the next rounds, ties are broken uniformly at random. The algorithm terminates once all labels stay the same in two consecutive iterations. LPA is successfully used in practice for detecting communities in networks (corresponding to vertex sets with the same label after termination of the algorithm). Perhaps surprisingly, LPA's performance on dense random graphs is hard to analyze, and so far convergence to consenus was known only when $np\ge n^{3/4+\varepsilon}$. By a very careful multi-stage exposure of the edges, we break this barrier and show that, when $np \ge n^{5/8+\varepsilon}$, a.a.s. the algorithm terminates with a single label. Moreover, we show that, if $np\gg n^{2/3}$, a.a.s. this label is the smallest one, whereas if $n^{5/8+\varepsilon}\le np\ll n^{2/3}$, the surviving label is a.a.s. not the smallest one.
We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.