We study the maximum-average submatrix problem, in which given an $N \times N$ matrix $J$ one needs to find the $k \times k$ submatrix with the largest average of entries. We study the problem for random matrices $J$ whose entries are i.i.d. random variables by mapping it to a variant of the Sherrington-Kirkpatrick spin-glass model at fixed magnetization. We characterize analytically the phase diagram of the model as a function of the submatrix average and the size of the submatrix $k$ in the limit $N\to\infty$. We consider submatrices of size $k = m N$ with $0 < m < 1$. We find a rich phase diagram, including dynamical, static one-step replica symmetry breaking and full-step replica symmetry breaking. In the limit of $m \to 0$, we find a simpler phase diagram featuring a frozen 1-RSB phase, where the Gibbs measure is composed of exponentially many pure states each with zero entropy. We discover an interesting phenomenon, reminiscent of the phenomenology of the binary perceptron: there exist efficient algorithms that provably work in the frozen 1-RSB phase.
Are asymptotic confidence sequences and anytime $p$-values uniformly valid for a nontrivial class of distributions $\mathcal{P}$? We give a positive answer to this question by deriving distribution-uniform anytime-valid inference procedures. Historically, anytime-valid methods -- including confidence sequences, anytime $p$-values, and sequential hypothesis tests that enable inference at stopping times -- have been justified nonasymptotically. Nevertheless, asymptotic procedures such as those based on the central limit theorem occupy an important part of statistical toolbox due to their simplicity, universality, and weak assumptions. While recent work has derived asymptotic analogues of anytime-valid methods with the aforementioned benefits, these were not shown to be $\mathcal{P}$-uniform, meaning that their asymptotics are not uniformly valid in a class of distributions $\mathcal{P}$. Indeed, the anytime-valid inference literature currently has no central limit theory to draw from that is both uniform in $\mathcal{P}$ and in the sample size $n$. This paper fills that gap by deriving a novel $\mathcal{P}$-uniform strong Gaussian approximation theorem, enabling $\mathcal{P}$-uniform anytime-valid inference for the first time. Along the way, our Gaussian approximation also yields a $\mathcal{P}$-uniform law of the iterated logarithm.
We obtain an expression for the error in the approximation of $f(A) \boldsymbol{b}$ and $\boldsymbol{b}^T f(A) \boldsymbol{b}$ with rational Krylov methods, where $A$ is a symmetric matrix, $\boldsymbol{b}$ is a vector and the function $f$ admits an integral representation. The error expression is obtained by linking the matrix function error with the error in the approximate solution of shifted linear systems using the same rational Krylov subspace, and it can be exploited to derive both a priori and a posteriori error bounds. The error bounds are a generalization of the ones given in [T. Chen, A. Greenbaum, C. Musco, C. Musco, SIAM J. Matrix Anal. Appl., 43 (2022), pp. 787--811] (arXiv:2106.09806) for the Lanczos method for matrix functions. A technique that we employ in the rational Krylov context can also be applied to refine the bounds for the Lanczos case.
Given a set of $n$ distinct real numbers, our goal is to form a symmetric, unreduced, tridiagonal, matrix with those numbers as eigenvalues. We give an algorithm which is a stable implementation of a naive algorithm forming the characteristic polynomial and then using a technique of Schmeisser.
We define and study the model of patterned non-determinism in bipartite communication complexity, denoted by $PNP^{X\leftrightarrow Y}$. It generalises the known models $UP^{X\leftrightarrow Y}$ and $FewP^{X\leftrightarrow Y}$ through relaxing the constraints on the witnessing structure of the underlying $NP^{X\leftrightarrow Y}$-protocol. It is shown that for the case of total functions $PNP^{X\leftrightarrow Y}$ equals $P^{X\leftrightarrow Y}$ (similarly to $UP^{X\leftrightarrow Y}$ and $FewP^{X\leftrightarrow Y}$). Moreover, the corresponding exhaustive witness-searching problem -- determining the full set of witnesses that lead to the acceptance of a given input pair -- also has an efficient deterministic protocol. The possibility of efficient exhaustive $PNP^{X\leftrightarrow Y}$-search is used to analyse certain three-party communication regime (under the "number in hand" input partition): The corresponding three-party model is shown to be as strong qualitatively as the weakest among its two-party amplifications obtained by allowing free communication between a pair of players.
The contraction$^*$-depth is the matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph $G$ is the minimum height of a rooted forest whose closure contains $G$ by proving the following for every matroid $M$ (except the trivial case when $M$ consists of loops and bridges only): the contraction$^*$-depth of $M$ plus one is equal to the minimum contraction-depth of a matroid containing $M$ as a restriction.
Quantifying the difference between two probability density functions, $p$ and $q$, using available data, is a fundamental problem in Statistics and Machine Learning. A usual approach for addressing this problem is the likelihood-ratio estimation (LRE) between $p$ and $q$, which -- to our best knowledge -- has been investigated mainly for the offline case. This paper contributes by introducing a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t \sim p, x'_t \sim q)$ are observed over time. The non-parametric nature of our approach has the advantage of being agnostic to the forms of $p$ and $q$. Moreover, we capitalize on the recent advances in Kernel Methods and functional minimization to develop an estimator that can be efficiently updated online. We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
When the unknown regression function of a single variable is known to have derivatives up to the $(\gamma+1)$th order bounded in absolute values by a common constant everywhere or a.e. (i.e., $(\gamma+1)$th degree of smoothness), the minimax optimal rate of the mean integrated squared error (MISE) is stated as $\left(\frac{1}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ in the literature. This paper shows that: (i) if $n\leq\left(\gamma+1\right)^{2\gamma+3}$, the minimax optimal MISE rate is $\frac{\log n}{n\log(\log n)}$ and the optimal degree of smoothness to exploit is roughly $\max\left\{ \left\lfloor \frac{\log n}{2\log\left(\log n\right)}\right\rfloor ,\,1\right\} $; (ii) if $n>\left(\gamma+1\right)^{2\gamma+3}$, the minimax optimal MISE rate is $\left(\frac{1}{n}\right)^{\frac{2\gamma+2}{2\gamma+3}}$ and the optimal degree of smoothness to exploit is $\gamma+1$. The fundamental contribution of this paper is a set of metric entropy bounds we develop for smooth function classes. Some of our bounds are original, and some of them improve and/or generalize the ones in the literature (e.g., Kolmogorov and Tikhomirov, 1959). Our metric entropy bounds allow us to show phase transitions in the minimax optimal MISE rates associated with some commonly seen smoothness classes as well as non-standard smoothness classes, and can also be of independent interest outside the nonparametric regression problems.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
Power functions with low $c$-differential uniformity have been widely studied not only because of their strong resistance to multiplicative differential attacks, but also low implementation cost in hardware. Furthermore, the $c$-differential spectrum of a function gives a more precise characterization of its $c$-differential properties. Let $f(x)=x^{\frac{p^n+3}{2}}$ be a power function over the finite field $\mathbb{F}_{p^{n}}$, where $p\neq3$ is an odd prime and $n$ is a positive integer. In this paper, for all primes $p\neq3$, by investigating certain character sums with regard to elliptic curves and computing the number of solutions of a system of equations over $\mathbb{F}_{p^{n}}$, we determine explicitly the $(-1)$-differential spectrum of $f$ with a unified approach. We show that if $p^n \equiv 3 \pmod 4$, then $f$ is a differentially $(-1,3)$-uniform function except for $p^n\in\{7,19,23\}$ where $f$ is an APcN function, and if $p^n \equiv 1 \pmod 4$, the $(-1)$-differential uniformity of $f$ is equal to $4$. In addition, an upper bound of the $c$-differential uniformity of $f$ is also given.
We introduce a relaxation for homomorphism problems that combines semidefinite programming with linear Diophantine equations, and propose a framework for the analysis of its power based on the spectral theory of association schemes. We use this framework to establish an unconditional lower bound against the semidefinite programming + linear equations model, by showing that the relaxation does not solve the approximate graph homomorphism problem and thus, in particular, the approximate graph colouring problem.